srikarvar commited on
Commit
3ba5aa4
·
verified ·
1 Parent(s): 8f59319

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,749 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-small
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - cosine_accuracy_threshold
9
+ - cosine_f1
10
+ - cosine_f1_threshold
11
+ - cosine_precision
12
+ - cosine_recall
13
+ - cosine_ap
14
+ - dot_accuracy
15
+ - dot_accuracy_threshold
16
+ - dot_f1
17
+ - dot_f1_threshold
18
+ - dot_precision
19
+ - dot_recall
20
+ - dot_ap
21
+ - manhattan_accuracy
22
+ - manhattan_accuracy_threshold
23
+ - manhattan_f1
24
+ - manhattan_f1_threshold
25
+ - manhattan_precision
26
+ - manhattan_recall
27
+ - manhattan_ap
28
+ - euclidean_accuracy
29
+ - euclidean_accuracy_threshold
30
+ - euclidean_f1
31
+ - euclidean_f1_threshold
32
+ - euclidean_precision
33
+ - euclidean_recall
34
+ - euclidean_ap
35
+ - max_accuracy
36
+ - max_accuracy_threshold
37
+ - max_f1
38
+ - max_f1_threshold
39
+ - max_precision
40
+ - max_recall
41
+ - max_ap
42
+ pipeline_tag: sentence-similarity
43
+ tags:
44
+ - sentence-transformers
45
+ - sentence-similarity
46
+ - feature-extraction
47
+ - generated_from_trainer
48
+ - dataset_size:971
49
+ - loss:OnlineContrastiveLoss
50
+ widget:
51
+ - source_sentence: Steps to bake a pie
52
+ sentences:
53
+ - How to bake a pie?
54
+ - What are the ingredients of a pizza?
55
+ - How to create a business plan?
56
+ - source_sentence: What are the benefits of yoga?
57
+ sentences:
58
+ - If I combine the yellow and blue colors, what color will I get?
59
+ - Can you help me understand this contract?
60
+ - What are the benefits of meditation?
61
+ - source_sentence: Capital city of Canada
62
+ sentences:
63
+ - What time does the movie start?
64
+ - Who is the President of the United States?
65
+ - What is the capital of Canada?
66
+ - source_sentence: Tell me about Shopify
67
+ sentences:
68
+ - Who discovered penicillin?
69
+ - Share info about Shopify
70
+ - Who invented the telephone?
71
+ - source_sentence: What is the melting point of ice at sea level?
72
+ sentences:
73
+ - What is the boiling point of water at sea level?
74
+ - Can you recommend a good restaurant nearby?
75
+ - Tell me a joke
76
+ model-index:
77
+ - name: SentenceTransformer based on intfloat/multilingual-e5-small
78
+ results:
79
+ - task:
80
+ type: binary-classification
81
+ name: Binary Classification
82
+ dataset:
83
+ name: pair class dev
84
+ type: pair-class-dev
85
+ metrics:
86
+ - type: cosine_accuracy
87
+ value: 0.9300411522633745
88
+ name: Cosine Accuracy
89
+ - type: cosine_accuracy_threshold
90
+ value: 0.788658857345581
91
+ name: Cosine Accuracy Threshold
92
+ - type: cosine_f1
93
+ value: 0.9237668161434978
94
+ name: Cosine F1
95
+ - type: cosine_f1_threshold
96
+ value: 0.7819762825965881
97
+ name: Cosine F1 Threshold
98
+ - type: cosine_precision
99
+ value: 0.8956521739130435
100
+ name: Cosine Precision
101
+ - type: cosine_recall
102
+ value: 0.9537037037037037
103
+ name: Cosine Recall
104
+ - type: cosine_ap
105
+ value: 0.9603135110633257
106
+ name: Cosine Ap
107
+ - type: dot_accuracy
108
+ value: 0.9300411522633745
109
+ name: Dot Accuracy
110
+ - type: dot_accuracy_threshold
111
+ value: 0.788658857345581
112
+ name: Dot Accuracy Threshold
113
+ - type: dot_f1
114
+ value: 0.9237668161434978
115
+ name: Dot F1
116
+ - type: dot_f1_threshold
117
+ value: 0.7819762229919434
118
+ name: Dot F1 Threshold
119
+ - type: dot_precision
120
+ value: 0.8956521739130435
121
+ name: Dot Precision
122
+ - type: dot_recall
123
+ value: 0.9537037037037037
124
+ name: Dot Recall
125
+ - type: dot_ap
126
+ value: 0.9603135110633257
127
+ name: Dot Ap
128
+ - type: manhattan_accuracy
129
+ value: 0.9218106995884774
130
+ name: Manhattan Accuracy
131
+ - type: manhattan_accuracy_threshold
132
+ value: 9.936657905578613
133
+ name: Manhattan Accuracy Threshold
134
+ - type: manhattan_f1
135
+ value: 0.914798206278027
136
+ name: Manhattan F1
137
+ - type: manhattan_f1_threshold
138
+ value: 10.316186904907227
139
+ name: Manhattan F1 Threshold
140
+ - type: manhattan_precision
141
+ value: 0.8869565217391304
142
+ name: Manhattan Precision
143
+ - type: manhattan_recall
144
+ value: 0.9444444444444444
145
+ name: Manhattan Recall
146
+ - type: manhattan_ap
147
+ value: 0.9578931449470002
148
+ name: Manhattan Ap
149
+ - type: euclidean_accuracy
150
+ value: 0.9300411522633745
151
+ name: Euclidean Accuracy
152
+ - type: euclidean_accuracy_threshold
153
+ value: 0.6501401662826538
154
+ name: Euclidean Accuracy Threshold
155
+ - type: euclidean_f1
156
+ value: 0.9237668161434978
157
+ name: Euclidean F1
158
+ - type: euclidean_f1_threshold
159
+ value: 0.6603381633758545
160
+ name: Euclidean F1 Threshold
161
+ - type: euclidean_precision
162
+ value: 0.8956521739130435
163
+ name: Euclidean Precision
164
+ - type: euclidean_recall
165
+ value: 0.9537037037037037
166
+ name: Euclidean Recall
167
+ - type: euclidean_ap
168
+ value: 0.9603135110633257
169
+ name: Euclidean Ap
170
+ - type: max_accuracy
171
+ value: 0.9300411522633745
172
+ name: Max Accuracy
173
+ - type: max_accuracy_threshold
174
+ value: 9.936657905578613
175
+ name: Max Accuracy Threshold
176
+ - type: max_f1
177
+ value: 0.9237668161434978
178
+ name: Max F1
179
+ - type: max_f1_threshold
180
+ value: 10.316186904907227
181
+ name: Max F1 Threshold
182
+ - type: max_precision
183
+ value: 0.8956521739130435
184
+ name: Max Precision
185
+ - type: max_recall
186
+ value: 0.9537037037037037
187
+ name: Max Recall
188
+ - type: max_ap
189
+ value: 0.9603135110633257
190
+ name: Max Ap
191
+ - task:
192
+ type: binary-classification
193
+ name: Binary Classification
194
+ dataset:
195
+ name: pair class test
196
+ type: pair-class-test
197
+ metrics:
198
+ - type: cosine_accuracy
199
+ value: 0.9300411522633745
200
+ name: Cosine Accuracy
201
+ - type: cosine_accuracy_threshold
202
+ value: 0.788658857345581
203
+ name: Cosine Accuracy Threshold
204
+ - type: cosine_f1
205
+ value: 0.9237668161434978
206
+ name: Cosine F1
207
+ - type: cosine_f1_threshold
208
+ value: 0.7819762825965881
209
+ name: Cosine F1 Threshold
210
+ - type: cosine_precision
211
+ value: 0.8956521739130435
212
+ name: Cosine Precision
213
+ - type: cosine_recall
214
+ value: 0.9537037037037037
215
+ name: Cosine Recall
216
+ - type: cosine_ap
217
+ value: 0.9603135110633257
218
+ name: Cosine Ap
219
+ - type: dot_accuracy
220
+ value: 0.9300411522633745
221
+ name: Dot Accuracy
222
+ - type: dot_accuracy_threshold
223
+ value: 0.788658857345581
224
+ name: Dot Accuracy Threshold
225
+ - type: dot_f1
226
+ value: 0.9237668161434978
227
+ name: Dot F1
228
+ - type: dot_f1_threshold
229
+ value: 0.7819762229919434
230
+ name: Dot F1 Threshold
231
+ - type: dot_precision
232
+ value: 0.8956521739130435
233
+ name: Dot Precision
234
+ - type: dot_recall
235
+ value: 0.9537037037037037
236
+ name: Dot Recall
237
+ - type: dot_ap
238
+ value: 0.9603135110633257
239
+ name: Dot Ap
240
+ - type: manhattan_accuracy
241
+ value: 0.9218106995884774
242
+ name: Manhattan Accuracy
243
+ - type: manhattan_accuracy_threshold
244
+ value: 9.936657905578613
245
+ name: Manhattan Accuracy Threshold
246
+ - type: manhattan_f1
247
+ value: 0.914798206278027
248
+ name: Manhattan F1
249
+ - type: manhattan_f1_threshold
250
+ value: 10.316186904907227
251
+ name: Manhattan F1 Threshold
252
+ - type: manhattan_precision
253
+ value: 0.8869565217391304
254
+ name: Manhattan Precision
255
+ - type: manhattan_recall
256
+ value: 0.9444444444444444
257
+ name: Manhattan Recall
258
+ - type: manhattan_ap
259
+ value: 0.9578931449470002
260
+ name: Manhattan Ap
261
+ - type: euclidean_accuracy
262
+ value: 0.9300411522633745
263
+ name: Euclidean Accuracy
264
+ - type: euclidean_accuracy_threshold
265
+ value: 0.6501401662826538
266
+ name: Euclidean Accuracy Threshold
267
+ - type: euclidean_f1
268
+ value: 0.9237668161434978
269
+ name: Euclidean F1
270
+ - type: euclidean_f1_threshold
271
+ value: 0.6603381633758545
272
+ name: Euclidean F1 Threshold
273
+ - type: euclidean_precision
274
+ value: 0.8956521739130435
275
+ name: Euclidean Precision
276
+ - type: euclidean_recall
277
+ value: 0.9537037037037037
278
+ name: Euclidean Recall
279
+ - type: euclidean_ap
280
+ value: 0.9603135110633257
281
+ name: Euclidean Ap
282
+ - type: max_accuracy
283
+ value: 0.9300411522633745
284
+ name: Max Accuracy
285
+ - type: max_accuracy_threshold
286
+ value: 9.936657905578613
287
+ name: Max Accuracy Threshold
288
+ - type: max_f1
289
+ value: 0.9237668161434978
290
+ name: Max F1
291
+ - type: max_f1_threshold
292
+ value: 10.316186904907227
293
+ name: Max F1 Threshold
294
+ - type: max_precision
295
+ value: 0.8956521739130435
296
+ name: Max Precision
297
+ - type: max_recall
298
+ value: 0.9537037037037037
299
+ name: Max Recall
300
+ - type: max_ap
301
+ value: 0.9603135110633257
302
+ name: Max Ap
303
+ ---
304
+
305
+ # SentenceTransformer based on intfloat/multilingual-e5-small
306
+
307
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
308
+
309
+ ## Model Details
310
+
311
+ ### Model Description
312
+ - **Model Type:** Sentence Transformer
313
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
314
+ - **Maximum Sequence Length:** 512 tokens
315
+ - **Output Dimensionality:** 384 tokens
316
+ - **Similarity Function:** Cosine Similarity
317
+ <!-- - **Training Dataset:** Unknown -->
318
+ <!-- - **Language:** Unknown -->
319
+ <!-- - **License:** Unknown -->
320
+
321
+ ### Model Sources
322
+
323
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
324
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
325
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
326
+
327
+ ### Full Model Architecture
328
+
329
+ ```
330
+ SentenceTransformer(
331
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
332
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
333
+ (2): Normalize()
334
+ )
335
+ ```
336
+
337
+ ## Usage
338
+
339
+ ### Direct Usage (Sentence Transformers)
340
+
341
+ First install the Sentence Transformers library:
342
+
343
+ ```bash
344
+ pip install -U sentence-transformers
345
+ ```
346
+
347
+ Then you can load this model and run inference.
348
+ ```python
349
+ from sentence_transformers import SentenceTransformer
350
+
351
+ # Download from the 🤗 Hub
352
+ model = SentenceTransformer("srikarvar/multilingual-e5-small-pairclass-4")
353
+ # Run inference
354
+ sentences = [
355
+ 'What is the melting point of ice at sea level?',
356
+ 'What is the boiling point of water at sea level?',
357
+ 'Can you recommend a good restaurant nearby?',
358
+ ]
359
+ embeddings = model.encode(sentences)
360
+ print(embeddings.shape)
361
+ # [3, 384]
362
+
363
+ # Get the similarity scores for the embeddings
364
+ similarities = model.similarity(embeddings, embeddings)
365
+ print(similarities.shape)
366
+ # [3, 3]
367
+ ```
368
+
369
+ <!--
370
+ ### Direct Usage (Transformers)
371
+
372
+ <details><summary>Click to see the direct usage in Transformers</summary>
373
+
374
+ </details>
375
+ -->
376
+
377
+ <!--
378
+ ### Downstream Usage (Sentence Transformers)
379
+
380
+ You can finetune this model on your own dataset.
381
+
382
+ <details><summary>Click to expand</summary>
383
+
384
+ </details>
385
+ -->
386
+
387
+ <!--
388
+ ### Out-of-Scope Use
389
+
390
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
391
+ -->
392
+
393
+ ## Evaluation
394
+
395
+ ### Metrics
396
+
397
+ #### Binary Classification
398
+ * Dataset: `pair-class-dev`
399
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
400
+
401
+ | Metric | Value |
402
+ |:-----------------------------|:-----------|
403
+ | cosine_accuracy | 0.93 |
404
+ | cosine_accuracy_threshold | 0.7887 |
405
+ | cosine_f1 | 0.9238 |
406
+ | cosine_f1_threshold | 0.782 |
407
+ | cosine_precision | 0.8957 |
408
+ | cosine_recall | 0.9537 |
409
+ | cosine_ap | 0.9603 |
410
+ | dot_accuracy | 0.93 |
411
+ | dot_accuracy_threshold | 0.7887 |
412
+ | dot_f1 | 0.9238 |
413
+ | dot_f1_threshold | 0.782 |
414
+ | dot_precision | 0.8957 |
415
+ | dot_recall | 0.9537 |
416
+ | dot_ap | 0.9603 |
417
+ | manhattan_accuracy | 0.9218 |
418
+ | manhattan_accuracy_threshold | 9.9367 |
419
+ | manhattan_f1 | 0.9148 |
420
+ | manhattan_f1_threshold | 10.3162 |
421
+ | manhattan_precision | 0.887 |
422
+ | manhattan_recall | 0.9444 |
423
+ | manhattan_ap | 0.9579 |
424
+ | euclidean_accuracy | 0.93 |
425
+ | euclidean_accuracy_threshold | 0.6501 |
426
+ | euclidean_f1 | 0.9238 |
427
+ | euclidean_f1_threshold | 0.6603 |
428
+ | euclidean_precision | 0.8957 |
429
+ | euclidean_recall | 0.9537 |
430
+ | euclidean_ap | 0.9603 |
431
+ | max_accuracy | 0.93 |
432
+ | max_accuracy_threshold | 9.9367 |
433
+ | max_f1 | 0.9238 |
434
+ | max_f1_threshold | 10.3162 |
435
+ | max_precision | 0.8957 |
436
+ | max_recall | 0.9537 |
437
+ | **max_ap** | **0.9603** |
438
+
439
+ #### Binary Classification
440
+ * Dataset: `pair-class-test`
441
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
442
+
443
+ | Metric | Value |
444
+ |:-----------------------------|:-----------|
445
+ | cosine_accuracy | 0.93 |
446
+ | cosine_accuracy_threshold | 0.7887 |
447
+ | cosine_f1 | 0.9238 |
448
+ | cosine_f1_threshold | 0.782 |
449
+ | cosine_precision | 0.8957 |
450
+ | cosine_recall | 0.9537 |
451
+ | cosine_ap | 0.9603 |
452
+ | dot_accuracy | 0.93 |
453
+ | dot_accuracy_threshold | 0.7887 |
454
+ | dot_f1 | 0.9238 |
455
+ | dot_f1_threshold | 0.782 |
456
+ | dot_precision | 0.8957 |
457
+ | dot_recall | 0.9537 |
458
+ | dot_ap | 0.9603 |
459
+ | manhattan_accuracy | 0.9218 |
460
+ | manhattan_accuracy_threshold | 9.9367 |
461
+ | manhattan_f1 | 0.9148 |
462
+ | manhattan_f1_threshold | 10.3162 |
463
+ | manhattan_precision | 0.887 |
464
+ | manhattan_recall | 0.9444 |
465
+ | manhattan_ap | 0.9579 |
466
+ | euclidean_accuracy | 0.93 |
467
+ | euclidean_accuracy_threshold | 0.6501 |
468
+ | euclidean_f1 | 0.9238 |
469
+ | euclidean_f1_threshold | 0.6603 |
470
+ | euclidean_precision | 0.8957 |
471
+ | euclidean_recall | 0.9537 |
472
+ | euclidean_ap | 0.9603 |
473
+ | max_accuracy | 0.93 |
474
+ | max_accuracy_threshold | 9.9367 |
475
+ | max_f1 | 0.9238 |
476
+ | max_f1_threshold | 10.3162 |
477
+ | max_precision | 0.8957 |
478
+ | max_recall | 0.9537 |
479
+ | **max_ap** | **0.9603** |
480
+
481
+ <!--
482
+ ## Bias, Risks and Limitations
483
+
484
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
485
+ -->
486
+
487
+ <!--
488
+ ### Recommendations
489
+
490
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
491
+ -->
492
+
493
+ ## Training Details
494
+
495
+ ### Training Dataset
496
+
497
+ #### Unnamed Dataset
498
+
499
+
500
+ * Size: 971 training samples
501
+ * Columns: <code>sentence2</code>, <code>sentence1</code>, and <code>label</code>
502
+ * Approximate statistics based on the first 1000 samples:
503
+ | | sentence2 | sentence1 | label |
504
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
505
+ | type | string | string | int |
506
+ | details | <ul><li>min: 4 tokens</li><li>mean: 10.12 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.82 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>0: ~48.61%</li><li>1: ~51.39%</li></ul> |
507
+ * Samples:
508
+ | sentence2 | sentence1 | label |
509
+ |:----------------------------------------------------------|:--------------------------------------------------------|:---------------|
510
+ | <code>Total number of bones in an adult human body</code> | <code>How many bones are in the human body?</code> | <code>1</code> |
511
+ | <code>What is the largest river in North America?</code> | <code>What is the largest lake in North America?</code> | <code>0</code> |
512
+ | <code>What is the capital of Australia?</code> | <code>What is the capital of New Zealand?</code> | <code>0</code> |
513
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
514
+
515
+ ### Evaluation Dataset
516
+
517
+ #### Unnamed Dataset
518
+
519
+
520
+ * Size: 243 evaluation samples
521
+ * Columns: <code>sentence2</code>, <code>sentence1</code>, and <code>label</code>
522
+ * Approximate statistics based on the first 1000 samples:
523
+ | | sentence2 | sentence1 | label |
524
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
525
+ | type | string | string | int |
526
+ | details | <ul><li>min: 4 tokens</li><li>mean: 10.09 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.55 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>0: ~55.56%</li><li>1: ~44.44%</li></ul> |
527
+ * Samples:
528
+ | sentence2 | sentence1 | label |
529
+ |:-------------------------------------------------------------|:---------------------------------------------------------------|:---------------|
530
+ | <code>What are the various forms of renewable energy?</code> | <code>What are the different types of renewable energy?</code> | <code>1</code> |
531
+ | <code>Gravity discoverer</code> | <code>Who discovered gravity?</code> | <code>1</code> |
532
+ | <code>Can you help me write this report?</code> | <code>Can you help me understand this report?</code> | <code>0</code> |
533
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
534
+
535
+ ### Training Hyperparameters
536
+ #### Non-Default Hyperparameters
537
+
538
+ - `eval_strategy`: epoch
539
+ - `per_device_train_batch_size`: 32
540
+ - `per_device_eval_batch_size`: 32
541
+ - `gradient_accumulation_steps`: 2
542
+ - `learning_rate`: 3e-06
543
+ - `weight_decay`: 0.01
544
+ - `num_train_epochs`: 15
545
+ - `lr_scheduler_type`: reduce_lr_on_plateau
546
+ - `warmup_ratio`: 0.1
547
+ - `load_best_model_at_end`: True
548
+ - `optim`: adamw_torch_fused
549
+
550
+ #### All Hyperparameters
551
+ <details><summary>Click to expand</summary>
552
+
553
+ - `overwrite_output_dir`: False
554
+ - `do_predict`: False
555
+ - `eval_strategy`: epoch
556
+ - `prediction_loss_only`: True
557
+ - `per_device_train_batch_size`: 32
558
+ - `per_device_eval_batch_size`: 32
559
+ - `per_gpu_train_batch_size`: None
560
+ - `per_gpu_eval_batch_size`: None
561
+ - `gradient_accumulation_steps`: 2
562
+ - `eval_accumulation_steps`: None
563
+ - `learning_rate`: 3e-06
564
+ - `weight_decay`: 0.01
565
+ - `adam_beta1`: 0.9
566
+ - `adam_beta2`: 0.999
567
+ - `adam_epsilon`: 1e-08
568
+ - `max_grad_norm`: 1.0
569
+ - `num_train_epochs`: 15
570
+ - `max_steps`: -1
571
+ - `lr_scheduler_type`: reduce_lr_on_plateau
572
+ - `lr_scheduler_kwargs`: {}
573
+ - `warmup_ratio`: 0.1
574
+ - `warmup_steps`: 0
575
+ - `log_level`: passive
576
+ - `log_level_replica`: warning
577
+ - `log_on_each_node`: True
578
+ - `logging_nan_inf_filter`: True
579
+ - `save_safetensors`: True
580
+ - `save_on_each_node`: False
581
+ - `save_only_model`: False
582
+ - `restore_callback_states_from_checkpoint`: False
583
+ - `no_cuda`: False
584
+ - `use_cpu`: False
585
+ - `use_mps_device`: False
586
+ - `seed`: 42
587
+ - `data_seed`: None
588
+ - `jit_mode_eval`: False
589
+ - `use_ipex`: False
590
+ - `bf16`: False
591
+ - `fp16`: False
592
+ - `fp16_opt_level`: O1
593
+ - `half_precision_backend`: auto
594
+ - `bf16_full_eval`: False
595
+ - `fp16_full_eval`: False
596
+ - `tf32`: None
597
+ - `local_rank`: 0
598
+ - `ddp_backend`: None
599
+ - `tpu_num_cores`: None
600
+ - `tpu_metrics_debug`: False
601
+ - `debug`: []
602
+ - `dataloader_drop_last`: False
603
+ - `dataloader_num_workers`: 0
604
+ - `dataloader_prefetch_factor`: None
605
+ - `past_index`: -1
606
+ - `disable_tqdm`: False
607
+ - `remove_unused_columns`: True
608
+ - `label_names`: None
609
+ - `load_best_model_at_end`: True
610
+ - `ignore_data_skip`: False
611
+ - `fsdp`: []
612
+ - `fsdp_min_num_params`: 0
613
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
614
+ - `fsdp_transformer_layer_cls_to_wrap`: None
615
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
616
+ - `deepspeed`: None
617
+ - `label_smoothing_factor`: 0.0
618
+ - `optim`: adamw_torch_fused
619
+ - `optim_args`: None
620
+ - `adafactor`: False
621
+ - `group_by_length`: False
622
+ - `length_column_name`: length
623
+ - `ddp_find_unused_parameters`: None
624
+ - `ddp_bucket_cap_mb`: None
625
+ - `ddp_broadcast_buffers`: False
626
+ - `dataloader_pin_memory`: True
627
+ - `dataloader_persistent_workers`: False
628
+ - `skip_memory_metrics`: True
629
+ - `use_legacy_prediction_loop`: False
630
+ - `push_to_hub`: False
631
+ - `resume_from_checkpoint`: None
632
+ - `hub_model_id`: None
633
+ - `hub_strategy`: every_save
634
+ - `hub_private_repo`: False
635
+ - `hub_always_push`: False
636
+ - `gradient_checkpointing`: False
637
+ - `gradient_checkpointing_kwargs`: None
638
+ - `include_inputs_for_metrics`: False
639
+ - `eval_do_concat_batches`: True
640
+ - `fp16_backend`: auto
641
+ - `push_to_hub_model_id`: None
642
+ - `push_to_hub_organization`: None
643
+ - `mp_parameters`:
644
+ - `auto_find_batch_size`: False
645
+ - `full_determinism`: False
646
+ - `torchdynamo`: None
647
+ - `ray_scope`: last
648
+ - `ddp_timeout`: 1800
649
+ - `torch_compile`: False
650
+ - `torch_compile_backend`: None
651
+ - `torch_compile_mode`: None
652
+ - `dispatch_batches`: None
653
+ - `split_batches`: None
654
+ - `include_tokens_per_second`: False
655
+ - `include_num_input_tokens_seen`: False
656
+ - `neftune_noise_alpha`: None
657
+ - `optim_target_modules`: None
658
+ - `batch_eval_metrics`: False
659
+ - `batch_sampler`: batch_sampler
660
+ - `multi_dataset_batch_sampler`: proportional
661
+
662
+ </details>
663
+
664
+ ### Training Logs
665
+ | Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
666
+ |:-----------:|:-------:|:-------------:|:----------:|:---------------------:|:----------------------:|
667
+ | 0 | 0 | - | - | 0.6426 | - |
668
+ | 0.6452 | 10 | 4.7075 | - | - | - |
669
+ | 0.9677 | 15 | - | 3.1481 | 0.7843 | - |
670
+ | 1.2903 | 20 | 3.431 | - | - | - |
671
+ | 1.9355 | 30 | 3.4054 | - | - | - |
672
+ | 2.0 | 31 | - | 2.1820 | 0.8692 | - |
673
+ | 2.5806 | 40 | 2.2735 | - | - | - |
674
+ | 2.9677 | 46 | - | 1.8185 | 0.9078 | - |
675
+ | 3.2258 | 50 | 2.3159 | - | - | - |
676
+ | 3.8710 | 60 | 2.1466 | - | - | - |
677
+ | 4.0 | 62 | - | 1.5769 | 0.9252 | - |
678
+ | 4.5161 | 70 | 1.6873 | - | - | - |
679
+ | 4.9677 | 77 | - | 1.4342 | 0.9310 | - |
680
+ | 5.1613 | 80 | 1.5927 | - | - | - |
681
+ | 5.8065 | 90 | 1.4184 | - | - | - |
682
+ | 6.0 | 93 | - | 1.3544 | 0.9357 | - |
683
+ | 6.4516 | 100 | 1.333 | - | - | - |
684
+ | 6.9677 | 108 | - | 1.2630 | 0.9402 | - |
685
+ | 7.0968 | 110 | 1.089 | - | - | - |
686
+ | 7.7419 | 120 | 1.0947 | - | - | - |
687
+ | 8.0 | 124 | - | 1.2120 | 0.9444 | - |
688
+ | 8.3871 | 130 | 0.8118 | - | - | - |
689
+ | 8.9677 | 139 | - | 1.1641 | 0.9454 | - |
690
+ | 9.0323 | 140 | 1.0237 | - | - | - |
691
+ | 9.6774 | 150 | 0.8406 | - | - | - |
692
+ | 10.0 | 155 | - | 1.0481 | 0.9464 | - |
693
+ | 10.3226 | 160 | 0.7081 | - | - | - |
694
+ | 10.9677 | 170 | 0.7397 | 0.9324 | 0.9509 | - |
695
+ | 11.6129 | 180 | 0.5604 | - | - | - |
696
+ | 12.0 | 186 | - | 0.8386 | 0.9556 | - |
697
+ | 12.2581 | 190 | 0.5841 | - | - | - |
698
+ | 12.9032 | 200 | 0.5463 | - | - | - |
699
+ | 12.9677 | 201 | - | 0.7930 | 0.9577 | - |
700
+ | 13.5484 | 210 | 0.4599 | - | - | - |
701
+ | 14.0 | 217 | - | 0.7564 | 0.9599 | - |
702
+ | 14.1935 | 220 | 0.2437 | - | - | - |
703
+ | **14.5161** | **225** | **-** | **0.7522** | **0.9603** | **0.9603** |
704
+
705
+ * The bold row denotes the saved checkpoint.
706
+
707
+ ### Framework Versions
708
+ - Python: 3.10.12
709
+ - Sentence Transformers: 3.0.1
710
+ - Transformers: 4.41.2
711
+ - PyTorch: 2.1.2+cu121
712
+ - Accelerate: 0.32.1
713
+ - Datasets: 2.19.1
714
+ - Tokenizers: 0.19.1
715
+
716
+ ## Citation
717
+
718
+ ### BibTeX
719
+
720
+ #### Sentence Transformers
721
+ ```bibtex
722
+ @inproceedings{reimers-2019-sentence-bert,
723
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
724
+ author = "Reimers, Nils and Gurevych, Iryna",
725
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
726
+ month = "11",
727
+ year = "2019",
728
+ publisher = "Association for Computational Linguistics",
729
+ url = "https://arxiv.org/abs/1908.10084",
730
+ }
731
+ ```
732
+
733
+ <!--
734
+ ## Glossary
735
+
736
+ *Clearly define terms in order to be accessible across audiences.*
737
+ -->
738
+
739
+ <!--
740
+ ## Model Card Authors
741
+
742
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
743
+ -->
744
+
745
+ <!--
746
+ ## Model Card Contact
747
+
748
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
749
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-small",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdd2e02f533df0de16802beb2c442e5bcba14b2b8e353e9544277de766b28476
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }