leemeng commited on
Commit
c79d6e6
·
1 Parent(s): ca0207c

release version

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.jpg filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ __pycache__
README.md ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ja
4
+ tags:
5
+ - japanese-stablelm
6
+ - causal-lm
7
+ pipeline_tag: text-generation
8
+ datasets:
9
+ - wikipedia
10
+ - mc4
11
+ - cc100
12
+ - oscar-corpus/OSCAR-2301
13
+ - oscar-corpus/OSCAR-2201
14
+ - togethercomputer/RedPajama-Data-1T
15
+ license:
16
+ - apache-2.0
17
+ ---
18
+
19
+ # Japanese-StableLM-Base-Alpha-7B
20
+
21
+ ![japanese-stablelm-icon](./japanese-stablelm-parrot.jpg)
22
+
23
+ > "A parrot able to speak Japanese, ukiyoe, edo period" — [Stable Diffusion XL](https://clipdrop.co/stable-diffusion)
24
+
25
+ ## Model Description
26
+
27
+ `japanese-stablelm-base-alpha-7b` is a 7B-parameter decoder-only language model pre-trained on a diverse collection of Japanese and English datasets which focus on maximizing Japanese language modeling performance and Japanese downstream task performance.
28
+
29
+ For an instruction-following model, check [Japanese-StableLM-Instruct-Alpha-7B](https://huggingface.co/stabilityai/japanese-stablelm-instruct-alpha-7b) and get access by accepting the terms and conditions.
30
+
31
+ ## Usage
32
+
33
+ First install additional dependencies in [requirements.txt](./requirements.txt):
34
+
35
+ ```sh
36
+ pip install sentencepiece einops
37
+ ```
38
+
39
+ Then start generating text with `japanese-stablelm-base-alpha-7b` by using the following code snippet:
40
+
41
+ ```python
42
+ import torch
43
+ from transformers import LlamaTokenizer, AutoModelForCausalLM
44
+
45
+ tokenizer = LlamaTokenizer.from_pretrained("novelai/nerdstash-tokenizer-v1")
46
+
47
+ model = AutoModelForCausalLM.from_pretrained(
48
+ "stabilityai/japanese-stablelm-base-alpha-7b",
49
+ trust_remote_code=True,
50
+ )
51
+ model.half()
52
+
53
+ if torch.cuda.is_available():
54
+ model = model.to("cuda")
55
+
56
+ prompt = """
57
+ AI で科学研究を加速するには、
58
+ """.strip()
59
+
60
+ input_ids = tokenizer.encode(
61
+ prompt,
62
+ add_special_tokens=False,
63
+ return_tensors="pt"
64
+ )
65
+
66
+ # this is for reproducibility.
67
+ # free free to change to get different result
68
+ seed = 23
69
+ torch.manual_seed(seed)
70
+
71
+ tokens = model.generate(
72
+ input_ids.to(device=model.device),
73
+ max_new_tokens=128,
74
+ temperature=1,
75
+ top_p=0.95,
76
+ do_sample=True,
77
+ )
78
+
79
+ out = tokenizer.decode(tokens[0], skip_special_tokens=False)
80
+ print(out)
81
+ """
82
+ AI で科学研究を加速するには、データ駆動型文化が必要であることも明らかになってきています。研究のあらゆる側面で、データがより重要になっているのです。
83
+ 20 世紀の科学は、研究者が直接研究を行うことで、研究データを活用してきました。その後、多くの科学分野ではデータは手動で分析されるようになったものの、これらの方法には多大なコストと労力がかかることが分かりました。 そこで、多くの研究者や研究者グループは、より効率的な手法を開発し、研究の規模を拡大してきました。21 世紀になると、研究者が手動で実施する必要のある研究は、その大部分を研究者が自動化できるようになりました。
84
+ """
85
+ ```
86
+
87
+ We suggest playing with different generation config (`top_p`, `repetition_penalty` etc) to find the best setup for your tasks. For example, use higher temperature for roleplay task, lower temperature for reasoning.
88
+
89
+ ## Model Details
90
+
91
+ * **Model type**: `japanese-stablelm-base-alpha-7b` model is an auto-regressive language model based on the NeoX transformer architecture.
92
+ * **Language(s)**: Japanese
93
+ * **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox)
94
+ * **License**: This model is licensed under [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
95
+
96
+
97
+ ## Training
98
+
99
+ | Parameters | Hidden Size | Layers | Heads | Sequence Length |
100
+ |------------|-------------|--------|-------|-----------------|
101
+ | 7B | 4096 | 32 | 32 | 2048 |
102
+
103
+ ### Training Dataset
104
+
105
+ `japanese-stablelm-base-alpha-7b` is pre-trained on around 750B tokens from a mixture of the following corpora:
106
+
107
+ - [Japanese/English Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
108
+ - [Japanese mc4](https://huggingface.co/datasets/mc4)
109
+ - [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz)
110
+ - [Japanese OSCAR](https://oscar-project.github.io/documentation/)
111
+ - [RedPajama](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T)
112
+
113
+ ## Use and Limitations
114
+
115
+ ### Intended Use
116
+
117
+ The model is intended to be used by all individuals as foundational models for application-specific fine-tuning without strict limitations on commercial use.
118
+
119
+ ### Limitations and bias
120
+
121
+ The pre-training dataset may have contained offensive or inappropriate content even after applying data cleansing filters which can be reflected in the model generated text. We recommend users exercise reasonable caution when using these models in production systems. Do not use the model for any applications that may cause harm or distress to individuals or groups.
122
+
123
+ ## Authors
124
+ - [Meng Lee](https://huggingface.co/leemeng)
125
+ - [Fujiki Nakamura](https://huggingface.co/fujiki)
126
+ - [Makoto Shing](https://huggingface.co/mkshing)
127
+ - [Paul McCann](https://huggingface.co/polm-stability)
128
+ - [Takuya Akiba](https://huggingface.co/iwiwi)
129
+ - [Naoki Orii](https://huggingface.co/mrorii)
130
+
131
+ ## Acknowledgements
132
+
133
+ We are utilizing the v1 version of the [novelai-tokenizer](https://github.com/NovelAI/novelai-tokenizer), introduced by [NovelAI](https://novelai.net/), because it processes both Japanese and English text effectively and efficiently. We extend our gratitude to NovelAI for allowing us to use their remarkable work. For more details about the tokenizer, please refer to their [blog post](https://blog.novelai.net/novelais-new-llm-tokenizer-5bc140e17642).
134
+
135
+ We are grateful for the contributions of the EleutherAI Polyglot-JA team in helping us to collect a large amount of pre-training data in Japanese. Polyglot-JA members includes Kevin (Project Lead), Fujiki (originally started this project when he commited to the Polyglot team), Yunho, Minji and Su-Kyeong Jang.
136
+
137
+ We are also appreciative of [AI Novelist/Sta (Bit192, Inc.)](https://ai-novel.com/index.php) and the numerous contributors from [Stable Community Japan](https://discord.gg/VPrcE475HB) for assisting us in gathering a large amount of high-quality Japanese textual data for model training.
138
+
139
+ ## Citations
140
+
141
+ ```bibtext
142
+ @software{gpt-neox-library,
143
+ title = {{GPT-NeoX: Large Scale Autoregressive Language Modeling in PyTorch}},
144
+ author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel},
145
+ url = {https://www.github.com/eleutherai/gpt-neox},
146
+ doi = {10.5281/zenodo.5879544},
147
+ month = {8},
148
+ year = {2021},
149
+ version = {0.0.1},
150
+ }
151
+ ```
152
+
153
+ ## How to cite
154
+ ```
155
+ @misc{JapaneseStableLMBaseAlpha7B,
156
+ url={[https://huggingface.co/stabilityai/japanese-stablelm-base-alpha-7b](https://huggingface.co/stabilityai/japanese-stablelm-base-alpha-7b)},
157
+ title={Japanese StableLM Base Alpha 7B},
158
+ author={Lee, Meng and Nakamura, Fujiki and Shing, Makoto and McCann, Paul and Akiba, Takuya and Orii, Naoki}
159
+ }
160
+ ```
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "stabilityai/japanese-stablelm-base-alpha-7b",
3
+ "architectures": [
4
+ "JapaneseStableLMAlphaForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "stabilityai/japanese-stablelm-base-alpha-7b--configuration_japanese_stablelm_alpha.JapaneseStableLMAlphaConfig",
8
+ "AutoModelForCausalLM": "stabilityai/japanese-stablelm-base-alpha-7b--modeling_japanese_stablelm_alpha.JapaneseStableLMAlphaForCausalLM"
9
+ },
10
+ "bos_token_id": 3,
11
+ "classifier_dropout": 0.1,
12
+ "eos_token_id": 3,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 4096,
15
+ "initializer_range": 0.02,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 2048,
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 32,
20
+ "rotary_emb_base": 10000,
21
+ "rotary_pct": 0.25,
22
+ "rotary_scale_base": 512,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.30.2",
26
+ "use_bias_in_mlp": false,
27
+ "use_cache": true,
28
+ "use_parallel_residual": true,
29
+ "vocab_size": 65536
30
+ }
configuration_japanese_stablelm_alpha.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Stability and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ JapaneseStableLMAlpha model configuration"""
16
+
17
+ from transformers import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ STABLE_LM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ class JapaneseStableLMAlphaConfig(PretrainedConfig):
27
+ r"""
28
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
29
+ documentation from [`PretrainedConfig`] for more information.
30
+
31
+ Args:
32
+ vocab_size (`int`, *optional*, defaults to 65536):
33
+ Vocabulary size of the JapaneseStableLMAlphaModel. Defines the number of different tokens that
34
+ can be represented by the `inputs_ids` passed when calling [`JapaneseStableLMAlphaModel`].
35
+ hidden_size (`int`, *optional*, defaults to 4096):
36
+ Dimension of the decoder layers and the pooler layer.
37
+ num_hidden_layers (`int`, *optional*, defaults to 32):
38
+ Number of hidden layers in the Transformer decoder.
39
+ num_attention_heads (`int`, *optional*, defaults to 32):
40
+ Number of attention heads for each attention layer in the Transformer decoder.
41
+ intermediate_size (`int`, *optional*, defaults to 16384):
42
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer decoder.
43
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
44
+ The non-linear activation function (function or string).
45
+ rotary_pct (`float`, *optional*, defaults to 0.25):
46
+ Percentage of hidden dimensions to allocate to rotary embeddings.
47
+ rotary_emb_base (`int`, *optional*, defaults to 10000)
48
+ Base for computing rotary embeddings frequency.
49
+ rotary_scale_base (`int`, *optional*, defaults to 512)
50
+ Base `scale` for computing XPos rotary embeddings scale.
51
+ classifier_dropout (`float`, *optional*, defaults to 0.1):
52
+ Argument used when doing token classification, used in the model
53
+ [`StableLMForTokenClassification`]. The dropout ratio for the hidden layer.
54
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
55
+ The maximum sequence length that this model might ever be used with.
56
+ Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
57
+ initializer_range (`float`, *optional*, defaults to 1e-5):
58
+ The standard deviation of the truncated_normal_initializer for initializing
59
+ all weight matrices.
60
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
61
+ The epsilon used by the layer normalization layers.
62
+ use_cache (`bool`, *optional*, defaults to `True`):
63
+ Whether or not the model should return the last key/values attentions
64
+ (not used by all models). Only relevant if `config.is_decoder=True`.
65
+ use_parallel_residual (`bool`, *optional*, defaults to `True`):
66
+ Whether to use a "parallel" formulation in each Transformer layer,
67
+ which can provide a slight training speedup at large scales.
68
+ Example:
69
+
70
+ ```python
71
+ >>> from transformers import JapaneseStableLMAlphaConfig, JapaneseStableLMAlphaModel
72
+
73
+ >>> # Initializing a JapaneseStableLMAlpha style configuration
74
+ >>> configuration = JapaneseStableLMAlphaConfig()
75
+
76
+ >>> # Initializing a model (with random weights) from the style configuration
77
+ >>> model = JapaneseStableLMAlphaModel(configuration) # doctest: +SKIP
78
+
79
+ >>> # Accessing the model configuration
80
+ >>> configuration = model.config # doctest: +SKIP
81
+ ```"""
82
+ def __init__(
83
+ self,
84
+ vocab_size=65536,
85
+ hidden_size=4096,
86
+ num_hidden_layers=32,
87
+ num_attention_heads=32,
88
+ hidden_act="silu",
89
+ rotary_pct=0.25,
90
+ rotary_emb_base=10000,
91
+ rotary_scale_base=512,
92
+ classifier_dropout=0.1,
93
+ max_position_embeddings=2048,
94
+ initializer_range=0.02,
95
+ layer_norm_eps=1e-5,
96
+ use_cache=True,
97
+ bos_token_id=3,
98
+ eos_token_id=3,
99
+ tie_word_embeddings=False,
100
+ use_parallel_residual=True,
101
+ use_bias_in_mlp=True,
102
+ **kwargs,
103
+ ):
104
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
105
+ self.vocab_size = vocab_size
106
+ self.max_position_embeddings = max_position_embeddings
107
+ self.hidden_size = hidden_size
108
+ self.num_hidden_layers = num_hidden_layers
109
+ self.num_attention_heads = num_attention_heads
110
+ self.hidden_act = hidden_act
111
+ self.rotary_pct = rotary_pct
112
+ self.rotary_emb_base = rotary_emb_base
113
+ self.rotary_scale_base = rotary_scale_base
114
+ self.classifier_dropout = classifier_dropout
115
+ self.initializer_range = initializer_range
116
+ self.layer_norm_eps = layer_norm_eps
117
+ self.use_cache = use_cache
118
+ self.tie_word_embeddings = tie_word_embeddings
119
+ self.use_parallel_residual = use_parallel_residual
120
+ self.use_bias_in_mlp = use_bias_in_mlp
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 3,
4
+ "eos_token_id": 3,
5
+ "transformers_version": "4.30.2"
6
+ }
japanese-stablelm-parrot.jpg ADDED

Git LFS Details

  • SHA256: 53bc784d0ac770fc054804fe4c585a80dd1fe50eb70a03b338768a20f6987b8a
  • Pointer size: 131 Bytes
  • Size of remote file: 118 kB
modeling_japanese_stablelm_alpha.py ADDED
@@ -0,0 +1,682 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Stability and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch JapaneseStableLMAlpha model. """
16
+ from typing import Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.utils.checkpoint
20
+ from torch import nn
21
+ from torch.nn import CrossEntropyLoss
22
+ from transformers.modeling_outputs import (
23
+ BaseModelOutputWithPast,
24
+ CausalLMOutputWithPast,
25
+ )
26
+ from transformers.modeling_utils import PreTrainedModel
27
+ from transformers.utils import logging
28
+ from .configuration_japanese_stablelm_alpha import JapaneseStableLMAlphaConfig
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+
34
+ class JapaneseStableLMAlphaPreTrainedModel(PreTrainedModel):
35
+ """
36
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
37
+ models.
38
+ """
39
+
40
+ config_class = JapaneseStableLMAlphaConfig
41
+ base_model_prefix = "transformer"
42
+ supports_gradient_checkpointing = True
43
+ _no_split_modules = ["DecoderLayer"]
44
+ _skip_keys_device_placement = "past_key_values"
45
+
46
+ def _init_weights(self, module):
47
+ """Initialize the weights"""
48
+ if isinstance(module, nn.Linear):
49
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
50
+ if module.bias is not None:
51
+ module.bias.data.zero_()
52
+ elif isinstance(module, nn.Embedding):
53
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
54
+ if module.padding_idx is not None:
55
+ module.weight.data[module.padding_idx].zero_()
56
+ elif isinstance(module, nn.LayerNorm):
57
+ if module.bias is not None:
58
+ module.bias.data.zero_()
59
+ if module.weight is not None:
60
+ module.weight.data.fill_(1.0)
61
+
62
+ def _set_gradient_checkpointing(self, module, value=False):
63
+ if isinstance(module, JapaneseStableLMAlphaModel):
64
+ module.gradient_checkpointing = value
65
+
66
+
67
+ class JapaneseStableLMAlphaModel(JapaneseStableLMAlphaPreTrainedModel):
68
+ def __init__(self, config):
69
+ super().__init__(config)
70
+ self.config = config
71
+
72
+ self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
73
+ self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
74
+ self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
75
+
76
+ self.gradient_checkpointing = False
77
+
78
+ # Initialize weights and apply final processing
79
+ self.post_init()
80
+
81
+ def get_input_embeddings(self):
82
+ return self.embed_in
83
+
84
+ def set_input_embeddings(self, value):
85
+ self.embed_in = value
86
+
87
+ def forward(
88
+ self,
89
+ input_ids: Optional[torch.LongTensor] = None,
90
+ attention_mask: Optional[torch.FloatTensor] = None,
91
+ position_ids: Optional[torch.LongTensor] = None,
92
+ head_mask: Optional[torch.FloatTensor] = None,
93
+ inputs_embeds: Optional[torch.FloatTensor] = None,
94
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
95
+ use_cache: Optional[bool] = None,
96
+ output_attentions: Optional[bool] = None,
97
+ output_hidden_states: Optional[bool] = None,
98
+ return_dict: Optional[bool] = None,
99
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
100
+ r"""
101
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
102
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
103
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
104
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
105
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
106
+ use_cache (`bool`, *optional*):
107
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
108
+ `past_key_values`).
109
+ """
110
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
111
+ output_hidden_states = (
112
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
113
+ )
114
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
115
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
116
+
117
+ if input_ids is not None and inputs_embeds is not None:
118
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
119
+ elif input_ids is not None:
120
+ input_shape = input_ids.size()
121
+ elif inputs_embeds is not None:
122
+ input_shape = inputs_embeds.size()[:-1]
123
+ else:
124
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
125
+
126
+ batch_size, seq_length = input_shape
127
+
128
+ if past_key_values is None:
129
+ past_length = 0
130
+ past_key_values = tuple([None] * self.config.num_hidden_layers)
131
+ else:
132
+ past_length = past_key_values[0][0].size(-2)
133
+
134
+ if position_ids is None:
135
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
136
+ position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device)
137
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
138
+ else:
139
+ position_ids = position_ids.view(-1, seq_length).long()
140
+
141
+ # Attention mask.
142
+ if attention_mask is not None:
143
+ assert batch_size > 0, "batch_size has to be defined and > 0"
144
+ attention_mask = attention_mask.view(batch_size, -1)
145
+ # We create a 3D attention mask from a 2D tensor mask.
146
+ # Sizes are [batch_size, 1, 1, to_seq_length]
147
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
148
+ # this attention mask is more simple than the triangular masking of causal attention
149
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
150
+ attention_mask = attention_mask[:, None, None, :]
151
+
152
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
153
+ # masked positions, this operation will create a tensor which is 0.0 for
154
+ # positions we want to attend and the dtype's smallest value for masked positions.
155
+ # Since we are adding it to the raw scores before the softmax, this is
156
+ # effectively the same as removing these entirely.
157
+ attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
158
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
159
+
160
+ # Prepare head mask if needed
161
+ # 1.0 in head_mask indicate we keep the head
162
+ # attention_probs has shape bsz x n_heads x N x N
163
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
164
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
165
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
166
+
167
+ if inputs_embeds is None:
168
+ inputs_embeds = self.embed_in(input_ids)
169
+
170
+ hidden_states = inputs_embeds
171
+
172
+ if self.gradient_checkpointing and self.training:
173
+ if use_cache:
174
+ logger.warning(
175
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
176
+ )
177
+ use_cache = False
178
+
179
+ presents = () if use_cache else None
180
+ all_attentions = () if output_attentions else None
181
+ all_hidden_states = () if output_hidden_states else None
182
+ for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
183
+ if output_hidden_states:
184
+ all_hidden_states = all_hidden_states + (hidden_states,)
185
+
186
+ if self.gradient_checkpointing and self.training:
187
+
188
+ def create_custom_forward(module):
189
+ def custom_forward(*inputs):
190
+ # None for layer_past
191
+ return module(*inputs, use_cache, None, output_attentions)
192
+
193
+ return custom_forward
194
+
195
+ outputs = torch.utils.checkpoint.checkpoint(
196
+ create_custom_forward(layer),
197
+ hidden_states,
198
+ attention_mask,
199
+ position_ids,
200
+ head_mask[i],
201
+ )
202
+ else:
203
+ outputs = layer(
204
+ hidden_states,
205
+ attention_mask=attention_mask,
206
+ position_ids=position_ids,
207
+ head_mask=head_mask[i],
208
+ layer_past=layer_past,
209
+ use_cache=use_cache,
210
+ output_attentions=output_attentions,
211
+ )
212
+ hidden_states = outputs[0]
213
+ if use_cache is True:
214
+ presents = presents + (outputs[1],)
215
+ if output_attentions:
216
+ all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
217
+
218
+ hidden_states = self.final_layer_norm(hidden_states)
219
+ # Add last hidden state
220
+ if output_hidden_states:
221
+ all_hidden_states = all_hidden_states + (hidden_states,)
222
+
223
+ if not return_dict:
224
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
225
+
226
+ return BaseModelOutputWithPast(
227
+ last_hidden_state=hidden_states,
228
+ past_key_values=presents,
229
+ hidden_states=all_hidden_states,
230
+ attentions=all_attentions,
231
+ )
232
+
233
+
234
+ class DecoderLayer(nn.Module):
235
+ def __init__(self, config):
236
+ super().__init__()
237
+ self.use_parallel_residual = config.use_parallel_residual
238
+ self.input_layernorm = nn.LayerNorm(
239
+ config.hidden_size,
240
+ eps=config.layer_norm_eps,
241
+ elementwise_affine=False,
242
+ )
243
+ self.post_attention_layernorm = nn.LayerNorm(
244
+ config.hidden_size,
245
+ eps=config.layer_norm_eps
246
+ )
247
+ self.attention = Attention(config)
248
+ self.mlp = MLP(config)
249
+
250
+ def forward(
251
+ self,
252
+ hidden_states: Optional[torch.FloatTensor],
253
+ attention_mask: Optional[torch.FloatTensor] = None,
254
+ position_ids: Optional[torch.LongTensor] = None,
255
+ head_mask: Optional[torch.FloatTensor] = None,
256
+ use_cache: Optional[bool] = False,
257
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
258
+ output_attentions: Optional[bool] = False,
259
+ ):
260
+ attention_layer_outputs = self.attention(
261
+ self.input_layernorm(hidden_states),
262
+ attention_mask=attention_mask,
263
+ position_ids=position_ids,
264
+ layer_past=layer_past,
265
+ head_mask=head_mask,
266
+ use_cache=use_cache,
267
+ output_attentions=output_attentions,
268
+ )
269
+ attn_output = attention_layer_outputs[0] # output_attn: attn_output, present, (attn_weights)
270
+ outputs = attention_layer_outputs[1:]
271
+
272
+ mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
273
+ hidden_states = hidden_states + mlp_output + attn_output
274
+
275
+ if use_cache:
276
+ outputs = (hidden_states,) + outputs # hidden_states, present, (attn_weights)
277
+ else:
278
+ outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights)
279
+
280
+ return outputs
281
+
282
+
283
+ class MLP(nn.Module):
284
+ def __init__(self, config: JapaneseStableLMAlphaConfig):
285
+ super().__init__()
286
+ hidden_size = config.hidden_size
287
+ multiple_of = 256
288
+ ff_dim = int(8 * hidden_size / 3)
289
+ intermediate_size = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
290
+
291
+ self.packed_input_proj = torch.nn.Linear(hidden_size, 2 * intermediate_size, bias=False)
292
+ self.out_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
293
+ self.act = nn.SiLU()
294
+
295
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
296
+ ff, ff_gate = self.packed_input_proj(x).chunk(2, dim=-1)
297
+ return self.out_proj(ff * self.act(ff_gate))
298
+
299
+
300
+ class RotaryEmbedding(torch.nn.Module):
301
+ """Based on Tri Dao's XPos: https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/layers/rotary.py"""
302
+ def __init__(
303
+ self,
304
+ dim: int,
305
+ max_position_embeddings: int,
306
+ base: int = 10_000,
307
+ scale_base: int = 512,
308
+ device: str = None
309
+ ):
310
+ super().__init__()
311
+ self.dim = dim
312
+ self.seq_len_cached = max_position_embeddings
313
+
314
+ # Set up `inv_freq` term
315
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
316
+ self.register_buffer("inv_freq", inv_freq)
317
+
318
+ # Set up `scale` term
319
+ self.scale_base = scale_base
320
+ scale = (
321
+ (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
322
+ if scale_base is not None else None
323
+ )
324
+ self.register_buffer("scale", scale)
325
+
326
+ # Seet up `cos..` and `sin...` cache terms
327
+ t = torch.arange(self.seq_len_cached, device=device, dtype=torch.float32)
328
+ freqs = torch.outer(t, self.inv_freq)
329
+ # freqs = torch.cat((freqs, freqs), dim=-1)
330
+ seq_range = torch.arange(self.seq_len_cached, dtype=self.scale.dtype, device=self.scale.device)
331
+ power = (seq_range - self.seq_len_cached // 2) / self.scale_base
332
+ scale_cached = self.scale.to(device=power.device) ** power.unsqueeze(-1)
333
+ # scale_cached = torch.cat((scale_cached, scale_cached), dim=-1)
334
+ self.register_buffer("cos_cached", torch.cos(freqs) * scale_cached, persistent=False)
335
+ self.register_buffer("sin_cached", torch.sin(freqs) * scale_cached, persistent=False)
336
+ self.register_buffer("cos_k_cached", torch.cos(freqs) / scale_cached, persistent=False)
337
+ self.register_buffer("sin_k_cached", torch.sin(freqs) / scale_cached, persistent=False)
338
+
339
+ def forward(self, x, seq_len=None):
340
+ if seq_len > self.seq_len_cached:
341
+ self.seq_len_cached = seq_len
342
+ t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
343
+ freqs = torch.outer(t, self.inv_freq)
344
+ freqs = torch.cat((freqs, freqs), dim=-1)
345
+ seq_range = torch.arange(self.seq_len_cached, dtype=self.scale.dtype, device=self.scale.device)
346
+ power = (seq_range - self.seq_len_cached // 2) / self.scale_base
347
+ scale_cached = self.scale.to(device=power.device) ** power.unsqueeze(-1)
348
+ scale_cached = torch.cat((scale_cached, scale_cached), dim=-1)
349
+ self.register_buffer("cos_cached", torch.cos(freqs) * scale_cached, persistent=False)
350
+ self.register_buffer("sin_cached", torch.sin(freqs) * scale_cached, persistent=False)
351
+ self.register_buffer("cos_k_cached", torch.cos(freqs) / scale_cached, persistent=False)
352
+ self.register_buffer("sin_k_cached", torch.sin(freqs) / scale_cached, persistent=False)
353
+ return (
354
+ self.cos_cached[:seq_len, ...],
355
+ self.sin_cached[:seq_len, ...],
356
+ self.cos_k_cached[:seq_len, ...],
357
+ self.sin_k_cached[:seq_len, ...],
358
+ )
359
+
360
+
361
+ def rotate_half(x):
362
+ x1, x2 = x.chunk(2, dim=-1)
363
+ return torch.cat((-x2, x1), dim=-1)
364
+
365
+
366
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, cos_k=None, sin_k=None):
367
+ """
368
+ q, k: [bs, num_heads, seq_len, rot_dim]
369
+ cos, sin: [seq_len, rot_dim / 2]
370
+ position_ids: [bs, seq_len]
371
+ """
372
+ # print(f"q: {q.shape}, k: {k.shape}, cos: {cos.shape}, sin: {sin.shape}, position_ids: {position_ids.shape}")
373
+ import einops
374
+ cos = einops.repeat(cos, 's r -> s (2 r)')
375
+ sin = einops.repeat(sin, 's r -> s (2 r)')
376
+ cos_k = einops.repeat(cos_k, 's r -> s (2 r)')
377
+ sin_k = einops.repeat(sin_k, 's r -> s (2 r)')
378
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, rot_dim]
379
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, rot_dim]
380
+ cos_k = cos_k[position_ids].unsqueeze(1) # [bs, 1, seq_len, rot_dim]
381
+ sin_k = sin_k[position_ids].unsqueeze(1) # [bs, 1, seq_len, rot_dim]
382
+
383
+ q_embed = (q * cos) + (rotate_half(q) * sin)
384
+ k_embed = (k * cos_k) + (rotate_half(k) * sin_k)
385
+ return q_embed, k_embed
386
+
387
+
388
+ class Attention(nn.Module):
389
+ def __init__(self, config):
390
+ super().__init__()
391
+ self.num_attention_heads = config.num_attention_heads
392
+ self.hidden_size = config.hidden_size
393
+ if self.hidden_size % self.num_attention_heads != 0:
394
+ raise ValueError(
395
+ "The hidden size is not divisble by the number of attention heads! Make sure to update them"
396
+ )
397
+ self.head_size = self.hidden_size // self.num_attention_heads
398
+
399
+ max_positions = config.max_position_embeddings
400
+ self.register_buffer(
401
+ "bias",
402
+ torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
403
+ 1, 1, max_positions, max_positions
404
+ ),
405
+ persistent=False,
406
+ )
407
+ self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
408
+
409
+ self.rotary_ndims = int(self.head_size * config.rotary_pct)
410
+ self.rotary_emb = RotaryEmbedding(
411
+ self.rotary_ndims,
412
+ max_position_embeddings=config.max_position_embeddings,
413
+ base=config.rotary_emb_base,
414
+ scale_base=config.rotary_scale_base,
415
+ )
416
+
417
+ self.register_buffer(
418
+ "norm_factor",
419
+ torch.sqrt(torch.tensor(self.head_size, dtype=torch.float32)).to(torch.get_default_dtype()),
420
+ persistent=False,
421
+ )
422
+
423
+ self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
424
+ self.dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
425
+
426
+ def forward(
427
+ self,
428
+ hidden_states: torch.FloatTensor,
429
+ attention_mask: torch.FloatTensor,
430
+ position_ids: torch.LongTensor,
431
+ head_mask: Optional[torch.FloatTensor] = None,
432
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
433
+ use_cache: Optional[bool] = False,
434
+ output_attentions: Optional[bool] = False,
435
+ ):
436
+ has_layer_past = layer_past is not None
437
+
438
+ # Compute QKV
439
+ # Attention heads [batch, seq_len, hidden_size]
440
+ # --> [batch, seq_len, (np * 3 * head_size)]
441
+ qkv = self.query_key_value(hidden_states)
442
+
443
+ # [batch, seq_len, (num_heads * 3 * head_size)]
444
+ # --> [batch, seq_len, num_heads, 3 * head_size]
445
+ new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
446
+ qkv = qkv.view(*new_qkv_shape)
447
+
448
+ # [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
449
+ query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
450
+ key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
451
+ value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
452
+
453
+ # Compute rotary embeddings on rotary_ndims
454
+ query_rot = query[..., : self.rotary_ndims]
455
+ query_pass = query[..., self.rotary_ndims :]
456
+ key_rot = key[..., : self.rotary_ndims]
457
+ key_pass = key[..., self.rotary_ndims :]
458
+
459
+ # Compute token offset for rotary embeddings (when decoding)
460
+ kv_seq_len = key.shape[-2]
461
+ if has_layer_past:
462
+ kv_seq_len += layer_past[0].shape[-2]
463
+
464
+ # Add rotary embeddings to query and key
465
+ # TODO: Check if using xpos
466
+ cos, sin, cos_k, sin_k = self.rotary_emb(value, seq_len=kv_seq_len)
467
+ query, key = apply_rotary_pos_emb(
468
+ query_rot, key_rot, cos, sin, position_ids, cos_k=cos_k, sin_k=sin_k)
469
+
470
+ query = torch.cat((query, query_pass), dim=-1)
471
+ key = torch.cat((key, key_pass), dim=-1)
472
+
473
+ # Cache QKV values
474
+ if has_layer_past:
475
+ past_key = layer_past[0]
476
+ past_value = layer_past[1]
477
+ key = torch.cat((past_key, key), dim=-2)
478
+ value = torch.cat((past_value, value), dim=-2)
479
+ present = (key, value) if use_cache else None
480
+
481
+ # Compute attention
482
+ attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
483
+
484
+ # Merge attn_head_size dim and num_attn_heads dim into hidden dim
485
+ # [bs, seq_len, num_attention_heads, attn_head_size]
486
+ attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
487
+ attn_output = attn_output.view(attn_output.size(0), attn_output.size(1), self.num_attention_heads * self.head_size)
488
+
489
+ attn_output = self.dense(attn_output)
490
+
491
+ outputs = (attn_output, present)
492
+ if output_attentions:
493
+ outputs += (attn_weights,)
494
+
495
+ return outputs
496
+
497
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
498
+ # q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
499
+ # compute causal mask from causal mask buffer
500
+
501
+ batch_size, num_attention_heads, query_length, attn_head_size = query.size()
502
+ key_length = key.size(-2)
503
+
504
+ causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
505
+
506
+ query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
507
+ key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
508
+ attn_scores = torch.zeros(
509
+ batch_size * num_attention_heads,
510
+ query_length,
511
+ key_length,
512
+ dtype=query.dtype,
513
+ device=key.device,
514
+ )
515
+ attn_scores = torch.baddbmm(
516
+ attn_scores,
517
+ query,
518
+ key.transpose(1, 2),
519
+ beta=1.0,
520
+ alpha=(torch.tensor(1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device) / self.norm_factor),
521
+ )
522
+ attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)
523
+
524
+ mask_value = torch.finfo(attn_scores.dtype).min
525
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
526
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
527
+ mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype, device=attn_scores.device)
528
+ attn_scores = torch.where(causal_mask, attn_scores, mask_value)
529
+
530
+ if attention_mask is not None:
531
+ # Apply the attention mask
532
+ attn_scores = attn_scores + attention_mask
533
+
534
+ # NOTE: Upcast to float32
535
+ attn_weights = nn.functional.softmax(attn_scores, dim=-1, dtype=torch.float32).type_as(value)
536
+
537
+ # Mask heads if we want to
538
+ if head_mask is not None:
539
+ attn_weights = attn_weights * head_mask
540
+
541
+ attn_output = torch.matmul(attn_weights, value)
542
+ return attn_output, attn_weights
543
+
544
+
545
+ def attention_mask_func(attention_scores, ltor_mask):
546
+ attention_scores.masked_fill_(~ltor_mask, torch.finfo(attention_scores.dtype).min)
547
+ return attention_scores
548
+
549
+
550
+ class JapaneseStableLMAlphaForCausalLM(JapaneseStableLMAlphaPreTrainedModel):
551
+ _tied_weights_keys = ["embed_out.weight"]
552
+
553
+ def __init__(self, config):
554
+ super().__init__(config)
555
+
556
+ self.transformer = JapaneseStableLMAlphaModel(config)
557
+ self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
558
+
559
+ # Initialize weights and apply final processing
560
+ self.post_init()
561
+
562
+ def get_output_embeddings(self):
563
+ return self.embed_out
564
+
565
+ def set_output_embeddings(self, new_embeddings):
566
+ self.embed_out = new_embeddings
567
+
568
+ def forward(
569
+ self,
570
+ input_ids: Optional[torch.LongTensor] = None,
571
+ attention_mask: Optional[torch.FloatTensor] = None,
572
+ position_ids: Optional[torch.LongTensor] = None,
573
+ inputs_embeds: Optional[torch.FloatTensor] = None,
574
+ head_mask: Optional[torch.FloatTensor] = None,
575
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
576
+ labels: Optional[torch.LongTensor] = None,
577
+ use_cache: Optional[bool] = None,
578
+ output_attentions: Optional[bool] = None,
579
+ output_hidden_states: Optional[bool] = None,
580
+ return_dict: Optional[bool] = None,
581
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
582
+ r"""
583
+ Example:
584
+
585
+ ```python
586
+ >>> import torch
587
+ >>> from transformers import LlamaTokenizer, JapaneseStableLMAlphaForCausalLM, JapaneseStableLMAlphaConfig
588
+
589
+ >>> tokenizer = LlamaTokenizer.from_pretrained("novelai/nerdstash-tokenizer-v1")
590
+ >>> config = JapaneseStableLMAlphaConfig.from_pretrained("stabilityai/stablelm-ja-base-alpha-7b")
591
+ >>> config.is_decoder = True
592
+ >>> model = JapaneseStableLMAlphaForCausalLM.from_pretrained("stabilityai/stablelm-ja-base-alpha-7b", config=config, trust_remote_code=True)
593
+
594
+ >>> inputs = tokenizer("日本語の美しいところは、", return_tensors="pt")
595
+ >>> outputs = model(**inputs)
596
+
597
+ >>> prediction_logits = outputs.logits
598
+ ```"""
599
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
600
+
601
+ outputs = self.transformer(
602
+ input_ids,
603
+ attention_mask=attention_mask,
604
+ position_ids=position_ids,
605
+ head_mask=head_mask,
606
+ inputs_embeds=inputs_embeds,
607
+ past_key_values=past_key_values,
608
+ use_cache=use_cache,
609
+ output_attentions=output_attentions,
610
+ output_hidden_states=output_hidden_states,
611
+ return_dict=return_dict,
612
+ )
613
+
614
+ hidden_states = outputs[0]
615
+ lm_logits = self.embed_out(hidden_states)
616
+
617
+ lm_loss = None
618
+ if labels is not None:
619
+ # move labels to correct device to enable model parallelism
620
+ labels = labels.to(lm_logits.device)
621
+ # we are doing next-token prediction; shift prediction scores and input ids by one
622
+ shift_logits = lm_logits[:, :-1, :].contiguous()
623
+ labels = labels[:, 1:].contiguous()
624
+ loss_fct = CrossEntropyLoss()
625
+ lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
626
+
627
+ if not return_dict:
628
+ output = (lm_logits,) + outputs[1:]
629
+ return ((lm_loss,) + output) if lm_loss is not None else output
630
+
631
+ return CausalLMOutputWithPast(
632
+ loss=lm_loss,
633
+ logits=lm_logits,
634
+ past_key_values=outputs.past_key_values,
635
+ hidden_states=outputs.hidden_states,
636
+ attentions=outputs.attentions,
637
+ )
638
+
639
+ def prepare_inputs_for_generation(
640
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
641
+ ):
642
+ input_shape = input_ids.shape
643
+
644
+ # cut decoder_input_ids if past is used
645
+ if past_key_values and past_key_values[0] is not None:
646
+ input_ids = input_ids[:, -1:]
647
+
648
+ position_ids = kwargs.get("position_ids", None)
649
+ if attention_mask is not None and position_ids is None:
650
+ # create position_ids on the fly for batch generation
651
+ position_ids = attention_mask.long().cumsum(-1) - 1
652
+ position_ids.masked_fill_(attention_mask == 0, 1)
653
+ if past_key_values:
654
+ position_ids = position_ids[:, -1].unsqueeze(-1)
655
+
656
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
657
+ if attention_mask is None:
658
+ attention_mask = input_ids.new_ones(input_shape)
659
+
660
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
661
+ if inputs_embeds is not None and past_key_values is None:
662
+ model_inputs = {"inputs_embeds": inputs_embeds}
663
+ else:
664
+ model_inputs = {"input_ids": input_ids}
665
+
666
+ model_inputs.update(
667
+ {
668
+ "attention_mask": attention_mask,
669
+ "past_key_values": past_key_values,
670
+ "position_ids": position_ids,
671
+ }
672
+ )
673
+
674
+ return model_inputs
675
+
676
+ def _reorder_cache(self, past_key_values, beam_idx):
677
+ reordered_past = ()
678
+ for layer_past in past_key_values:
679
+ reordered_past += (
680
+ tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
681
+ )
682
+ return reordered_past
pytorch_model-00001-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:299e36821f331d32271e0784107e004682e5acba667ba93276c54e23567922a0
3
+ size 9978676569
pytorch_model-00002-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:335ad506d6255a4bb7629e231196b40581d870fcaf3ac7e9c7c39d54cd160770
3
+ size 9982872727
pytorch_model-00003-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d831fc7e8001819e69823c4590128a4059ba3c2c7df79fbeee11a91f606b149
3
+ size 8091132329
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 28052590592
4
+ },
5
+ "weight_map": {
6
+ "embed_out.weight": "pytorch_model-00003-of-00003.bin",
7
+ "transformer.embed_in.weight": "pytorch_model-00001-of-00003.bin",
8
+ "transformer.final_layer_norm.bias": "pytorch_model-00003-of-00003.bin",
9
+ "transformer.final_layer_norm.weight": "pytorch_model-00003-of-00003.bin",
10
+ "transformer.layers.0.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
11
+ "transformer.layers.0.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
12
+ "transformer.layers.0.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
13
+ "transformer.layers.0.attention.rotary_emb.scale": "pytorch_model-00001-of-00003.bin",
14
+ "transformer.layers.0.mlp.out_proj.weight": "pytorch_model-00001-of-00003.bin",
15
+ "transformer.layers.0.mlp.packed_input_proj.weight": "pytorch_model-00001-of-00003.bin",
16
+ "transformer.layers.0.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
17
+ "transformer.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
18
+ "transformer.layers.1.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
19
+ "transformer.layers.1.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
20
+ "transformer.layers.1.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
21
+ "transformer.layers.1.attention.rotary_emb.scale": "pytorch_model-00001-of-00003.bin",
22
+ "transformer.layers.1.mlp.out_proj.weight": "pytorch_model-00001-of-00003.bin",
23
+ "transformer.layers.1.mlp.packed_input_proj.weight": "pytorch_model-00001-of-00003.bin",
24
+ "transformer.layers.1.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
25
+ "transformer.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
26
+ "transformer.layers.10.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
27
+ "transformer.layers.10.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
28
+ "transformer.layers.10.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
29
+ "transformer.layers.10.attention.rotary_emb.scale": "pytorch_model-00001-of-00003.bin",
30
+ "transformer.layers.10.mlp.out_proj.weight": "pytorch_model-00001-of-00003.bin",
31
+ "transformer.layers.10.mlp.packed_input_proj.weight": "pytorch_model-00001-of-00003.bin",
32
+ "transformer.layers.10.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
33
+ "transformer.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
34
+ "transformer.layers.11.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
35
+ "transformer.layers.11.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
36
+ "transformer.layers.11.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
37
+ "transformer.layers.11.attention.rotary_emb.scale": "pytorch_model-00001-of-00003.bin",
38
+ "transformer.layers.11.mlp.out_proj.weight": "pytorch_model-00002-of-00003.bin",
39
+ "transformer.layers.11.mlp.packed_input_proj.weight": "pytorch_model-00002-of-00003.bin",
40
+ "transformer.layers.11.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
41
+ "transformer.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
42
+ "transformer.layers.12.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
43
+ "transformer.layers.12.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
44
+ "transformer.layers.12.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
45
+ "transformer.layers.12.attention.rotary_emb.scale": "pytorch_model-00002-of-00003.bin",
46
+ "transformer.layers.12.mlp.out_proj.weight": "pytorch_model-00002-of-00003.bin",
47
+ "transformer.layers.12.mlp.packed_input_proj.weight": "pytorch_model-00002-of-00003.bin",
48
+ "transformer.layers.12.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
49
+ "transformer.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
50
+ "transformer.layers.13.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
51
+ "transformer.layers.13.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
52
+ "transformer.layers.13.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
53
+ "transformer.layers.13.attention.rotary_emb.scale": "pytorch_model-00002-of-00003.bin",
54
+ "transformer.layers.13.mlp.out_proj.weight": "pytorch_model-00002-of-00003.bin",
55
+ "transformer.layers.13.mlp.packed_input_proj.weight": "pytorch_model-00002-of-00003.bin",
56
+ "transformer.layers.13.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
57
+ "transformer.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
58
+ "transformer.layers.14.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
59
+ "transformer.layers.14.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
60
+ "transformer.layers.14.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
61
+ "transformer.layers.14.attention.rotary_emb.scale": "pytorch_model-00002-of-00003.bin",
62
+ "transformer.layers.14.mlp.out_proj.weight": "pytorch_model-00002-of-00003.bin",
63
+ "transformer.layers.14.mlp.packed_input_proj.weight": "pytorch_model-00002-of-00003.bin",
64
+ "transformer.layers.14.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
65
+ "transformer.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
66
+ "transformer.layers.15.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
67
+ "transformer.layers.15.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
68
+ "transformer.layers.15.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
69
+ "transformer.layers.15.attention.rotary_emb.scale": "pytorch_model-00002-of-00003.bin",
70
+ "transformer.layers.15.mlp.out_proj.weight": "pytorch_model-00002-of-00003.bin",
71
+ "transformer.layers.15.mlp.packed_input_proj.weight": "pytorch_model-00002-of-00003.bin",
72
+ "transformer.layers.15.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
73
+ "transformer.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
74
+ "transformer.layers.16.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
75
+ "transformer.layers.16.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
76
+ "transformer.layers.16.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
77
+ "transformer.layers.16.attention.rotary_emb.scale": "pytorch_model-00002-of-00003.bin",
78
+ "transformer.layers.16.mlp.out_proj.weight": "pytorch_model-00002-of-00003.bin",
79
+ "transformer.layers.16.mlp.packed_input_proj.weight": "pytorch_model-00002-of-00003.bin",
80
+ "transformer.layers.16.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
81
+ "transformer.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
82
+ "transformer.layers.17.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
83
+ "transformer.layers.17.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
84
+ "transformer.layers.17.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
85
+ "transformer.layers.17.attention.rotary_emb.scale": "pytorch_model-00002-of-00003.bin",
86
+ "transformer.layers.17.mlp.out_proj.weight": "pytorch_model-00002-of-00003.bin",
87
+ "transformer.layers.17.mlp.packed_input_proj.weight": "pytorch_model-00002-of-00003.bin",
88
+ "transformer.layers.17.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
89
+ "transformer.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
90
+ "transformer.layers.18.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
91
+ "transformer.layers.18.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
92
+ "transformer.layers.18.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
93
+ "transformer.layers.18.attention.rotary_emb.scale": "pytorch_model-00002-of-00003.bin",
94
+ "transformer.layers.18.mlp.out_proj.weight": "pytorch_model-00002-of-00003.bin",
95
+ "transformer.layers.18.mlp.packed_input_proj.weight": "pytorch_model-00002-of-00003.bin",
96
+ "transformer.layers.18.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
97
+ "transformer.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
98
+ "transformer.layers.19.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
99
+ "transformer.layers.19.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
100
+ "transformer.layers.19.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
101
+ "transformer.layers.19.attention.rotary_emb.scale": "pytorch_model-00002-of-00003.bin",
102
+ "transformer.layers.19.mlp.out_proj.weight": "pytorch_model-00002-of-00003.bin",
103
+ "transformer.layers.19.mlp.packed_input_proj.weight": "pytorch_model-00002-of-00003.bin",
104
+ "transformer.layers.19.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
105
+ "transformer.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
106
+ "transformer.layers.2.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
107
+ "transformer.layers.2.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
108
+ "transformer.layers.2.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
109
+ "transformer.layers.2.attention.rotary_emb.scale": "pytorch_model-00001-of-00003.bin",
110
+ "transformer.layers.2.mlp.out_proj.weight": "pytorch_model-00001-of-00003.bin",
111
+ "transformer.layers.2.mlp.packed_input_proj.weight": "pytorch_model-00001-of-00003.bin",
112
+ "transformer.layers.2.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
113
+ "transformer.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
114
+ "transformer.layers.20.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
115
+ "transformer.layers.20.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
116
+ "transformer.layers.20.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
117
+ "transformer.layers.20.attention.rotary_emb.scale": "pytorch_model-00002-of-00003.bin",
118
+ "transformer.layers.20.mlp.out_proj.weight": "pytorch_model-00002-of-00003.bin",
119
+ "transformer.layers.20.mlp.packed_input_proj.weight": "pytorch_model-00002-of-00003.bin",
120
+ "transformer.layers.20.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
121
+ "transformer.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
122
+ "transformer.layers.21.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
123
+ "transformer.layers.21.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
124
+ "transformer.layers.21.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
125
+ "transformer.layers.21.attention.rotary_emb.scale": "pytorch_model-00002-of-00003.bin",
126
+ "transformer.layers.21.mlp.out_proj.weight": "pytorch_model-00002-of-00003.bin",
127
+ "transformer.layers.21.mlp.packed_input_proj.weight": "pytorch_model-00002-of-00003.bin",
128
+ "transformer.layers.21.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
129
+ "transformer.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
130
+ "transformer.layers.22.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
131
+ "transformer.layers.22.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
132
+ "transformer.layers.22.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
133
+ "transformer.layers.22.attention.rotary_emb.scale": "pytorch_model-00002-of-00003.bin",
134
+ "transformer.layers.22.mlp.out_proj.weight": "pytorch_model-00002-of-00003.bin",
135
+ "transformer.layers.22.mlp.packed_input_proj.weight": "pytorch_model-00002-of-00003.bin",
136
+ "transformer.layers.22.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
137
+ "transformer.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
138
+ "transformer.layers.23.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
139
+ "transformer.layers.23.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
140
+ "transformer.layers.23.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
141
+ "transformer.layers.23.attention.rotary_emb.scale": "pytorch_model-00002-of-00003.bin",
142
+ "transformer.layers.23.mlp.out_proj.weight": "pytorch_model-00003-of-00003.bin",
143
+ "transformer.layers.23.mlp.packed_input_proj.weight": "pytorch_model-00003-of-00003.bin",
144
+ "transformer.layers.23.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
145
+ "transformer.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
146
+ "transformer.layers.24.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
147
+ "transformer.layers.24.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
148
+ "transformer.layers.24.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
149
+ "transformer.layers.24.attention.rotary_emb.scale": "pytorch_model-00003-of-00003.bin",
150
+ "transformer.layers.24.mlp.out_proj.weight": "pytorch_model-00003-of-00003.bin",
151
+ "transformer.layers.24.mlp.packed_input_proj.weight": "pytorch_model-00003-of-00003.bin",
152
+ "transformer.layers.24.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
153
+ "transformer.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
154
+ "transformer.layers.25.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
155
+ "transformer.layers.25.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
156
+ "transformer.layers.25.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
157
+ "transformer.layers.25.attention.rotary_emb.scale": "pytorch_model-00003-of-00003.bin",
158
+ "transformer.layers.25.mlp.out_proj.weight": "pytorch_model-00003-of-00003.bin",
159
+ "transformer.layers.25.mlp.packed_input_proj.weight": "pytorch_model-00003-of-00003.bin",
160
+ "transformer.layers.25.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
161
+ "transformer.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
162
+ "transformer.layers.26.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
163
+ "transformer.layers.26.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
164
+ "transformer.layers.26.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
165
+ "transformer.layers.26.attention.rotary_emb.scale": "pytorch_model-00003-of-00003.bin",
166
+ "transformer.layers.26.mlp.out_proj.weight": "pytorch_model-00003-of-00003.bin",
167
+ "transformer.layers.26.mlp.packed_input_proj.weight": "pytorch_model-00003-of-00003.bin",
168
+ "transformer.layers.26.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
169
+ "transformer.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
170
+ "transformer.layers.27.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
171
+ "transformer.layers.27.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
172
+ "transformer.layers.27.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
173
+ "transformer.layers.27.attention.rotary_emb.scale": "pytorch_model-00003-of-00003.bin",
174
+ "transformer.layers.27.mlp.out_proj.weight": "pytorch_model-00003-of-00003.bin",
175
+ "transformer.layers.27.mlp.packed_input_proj.weight": "pytorch_model-00003-of-00003.bin",
176
+ "transformer.layers.27.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
177
+ "transformer.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
178
+ "transformer.layers.28.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
179
+ "transformer.layers.28.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
180
+ "transformer.layers.28.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
181
+ "transformer.layers.28.attention.rotary_emb.scale": "pytorch_model-00003-of-00003.bin",
182
+ "transformer.layers.28.mlp.out_proj.weight": "pytorch_model-00003-of-00003.bin",
183
+ "transformer.layers.28.mlp.packed_input_proj.weight": "pytorch_model-00003-of-00003.bin",
184
+ "transformer.layers.28.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
185
+ "transformer.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
186
+ "transformer.layers.29.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
187
+ "transformer.layers.29.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
188
+ "transformer.layers.29.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
189
+ "transformer.layers.29.attention.rotary_emb.scale": "pytorch_model-00003-of-00003.bin",
190
+ "transformer.layers.29.mlp.out_proj.weight": "pytorch_model-00003-of-00003.bin",
191
+ "transformer.layers.29.mlp.packed_input_proj.weight": "pytorch_model-00003-of-00003.bin",
192
+ "transformer.layers.29.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
193
+ "transformer.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
194
+ "transformer.layers.3.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
195
+ "transformer.layers.3.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
196
+ "transformer.layers.3.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
197
+ "transformer.layers.3.attention.rotary_emb.scale": "pytorch_model-00001-of-00003.bin",
198
+ "transformer.layers.3.mlp.out_proj.weight": "pytorch_model-00001-of-00003.bin",
199
+ "transformer.layers.3.mlp.packed_input_proj.weight": "pytorch_model-00001-of-00003.bin",
200
+ "transformer.layers.3.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
201
+ "transformer.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
202
+ "transformer.layers.30.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
203
+ "transformer.layers.30.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
204
+ "transformer.layers.30.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
205
+ "transformer.layers.30.attention.rotary_emb.scale": "pytorch_model-00003-of-00003.bin",
206
+ "transformer.layers.30.mlp.out_proj.weight": "pytorch_model-00003-of-00003.bin",
207
+ "transformer.layers.30.mlp.packed_input_proj.weight": "pytorch_model-00003-of-00003.bin",
208
+ "transformer.layers.30.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
209
+ "transformer.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
210
+ "transformer.layers.31.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
211
+ "transformer.layers.31.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
212
+ "transformer.layers.31.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
213
+ "transformer.layers.31.attention.rotary_emb.scale": "pytorch_model-00003-of-00003.bin",
214
+ "transformer.layers.31.mlp.out_proj.weight": "pytorch_model-00003-of-00003.bin",
215
+ "transformer.layers.31.mlp.packed_input_proj.weight": "pytorch_model-00003-of-00003.bin",
216
+ "transformer.layers.31.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
217
+ "transformer.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
218
+ "transformer.layers.4.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
219
+ "transformer.layers.4.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
220
+ "transformer.layers.4.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
221
+ "transformer.layers.4.attention.rotary_emb.scale": "pytorch_model-00001-of-00003.bin",
222
+ "transformer.layers.4.mlp.out_proj.weight": "pytorch_model-00001-of-00003.bin",
223
+ "transformer.layers.4.mlp.packed_input_proj.weight": "pytorch_model-00001-of-00003.bin",
224
+ "transformer.layers.4.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
225
+ "transformer.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
226
+ "transformer.layers.5.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
227
+ "transformer.layers.5.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
228
+ "transformer.layers.5.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
229
+ "transformer.layers.5.attention.rotary_emb.scale": "pytorch_model-00001-of-00003.bin",
230
+ "transformer.layers.5.mlp.out_proj.weight": "pytorch_model-00001-of-00003.bin",
231
+ "transformer.layers.5.mlp.packed_input_proj.weight": "pytorch_model-00001-of-00003.bin",
232
+ "transformer.layers.5.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
233
+ "transformer.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
234
+ "transformer.layers.6.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
235
+ "transformer.layers.6.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
236
+ "transformer.layers.6.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
237
+ "transformer.layers.6.attention.rotary_emb.scale": "pytorch_model-00001-of-00003.bin",
238
+ "transformer.layers.6.mlp.out_proj.weight": "pytorch_model-00001-of-00003.bin",
239
+ "transformer.layers.6.mlp.packed_input_proj.weight": "pytorch_model-00001-of-00003.bin",
240
+ "transformer.layers.6.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
241
+ "transformer.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
242
+ "transformer.layers.7.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
243
+ "transformer.layers.7.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
244
+ "transformer.layers.7.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
245
+ "transformer.layers.7.attention.rotary_emb.scale": "pytorch_model-00001-of-00003.bin",
246
+ "transformer.layers.7.mlp.out_proj.weight": "pytorch_model-00001-of-00003.bin",
247
+ "transformer.layers.7.mlp.packed_input_proj.weight": "pytorch_model-00001-of-00003.bin",
248
+ "transformer.layers.7.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
249
+ "transformer.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
250
+ "transformer.layers.8.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
251
+ "transformer.layers.8.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
252
+ "transformer.layers.8.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
253
+ "transformer.layers.8.attention.rotary_emb.scale": "pytorch_model-00001-of-00003.bin",
254
+ "transformer.layers.8.mlp.out_proj.weight": "pytorch_model-00001-of-00003.bin",
255
+ "transformer.layers.8.mlp.packed_input_proj.weight": "pytorch_model-00001-of-00003.bin",
256
+ "transformer.layers.8.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
257
+ "transformer.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
258
+ "transformer.layers.9.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
259
+ "transformer.layers.9.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
260
+ "transformer.layers.9.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
261
+ "transformer.layers.9.attention.rotary_emb.scale": "pytorch_model-00001-of-00003.bin",
262
+ "transformer.layers.9.mlp.out_proj.weight": "pytorch_model-00001-of-00003.bin",
263
+ "transformer.layers.9.mlp.packed_input_proj.weight": "pytorch_model-00001-of-00003.bin",
264
+ "transformer.layers.9.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
265
+ "transformer.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin"
266
+ }
267
+ }
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ sentencepiece
2
+ einops