File size: 1,619 Bytes
9ad9547
 
 
 
 
 
 
 
 
816ac34
9ad9547
816ac34
9ad9547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
816ac34
9ad9547
 
 
 
816ac34
9ad9547
 
 
 
816ac34
 
 
 
 
 
 
 
 
9ad9547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
816ac34
9ad9547
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
library_name: transformers
tags:
- masked-image-modeling
- generated_from_trainer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# smb-vision-large-1202

This model is trained from scratch using [VideoMAE](https://huggingface.co/docs/transformers/en/model_doc/videomae) on over 55k CT volumes.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-04
- train_batch_size: 16
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 10.0

### Training results

{
  "_runtime": 2641.091489502,
  "_step": 399,
  "_timestamp": 1733187755.3146417,
  "_wandb.runtime": 2660,
  "train/epoch": 8.425414364640885,
  "train/global_step": 18300,
  "train/grad_norm": 0.04110511764883995,
  "train/learning_rate": 0.0001624558726951691,
  "train/loss": 0.4292
}


### Framework versions

- Transformers 4.46.0
- Pytorch 2.5.0
- Datasets 3.0.2
- Tokenizers 0.20.1

### How to use
```python
# load data using `dataload.py`

model = VideoMAEForPreTraining.from_pretrained(
    standardmodelbio/smb-vision-large,
    trust_remote_code=True,
)

embedding = model.videomae(batch["image"])

```