Update README.md
Browse files
README.md
CHANGED
@@ -62,14 +62,21 @@ SteamSHP gets an average 72.8% accuracy across all domains:
|
|
62 |
|
63 |
## Usage
|
64 |
|
65 |
-
Here's how to
|
66 |
|
67 |
```python
|
68 |
|
69 |
-
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
|
|
70 |
|
71 |
-
tokenizer = T5Tokenizer.from_pretrained('stanfordnlp/SteamSHP-preference-model')
|
72 |
-
model = T5ForConditionalGeneration.from_pretrained('stanfordnlp/SteamSHP-preference-model')
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
```
|
74 |
|
75 |
The input text should be of the format:
|
|
|
62 |
|
63 |
## Usage
|
64 |
|
65 |
+
Here's how to use the model:
|
66 |
|
67 |
```python
|
68 |
|
69 |
+
>> from transformers import T5ForConditionalGeneration, T5Tokenizer
|
70 |
+
>> device = 'cuda'
|
71 |
|
72 |
+
>> tokenizer = T5Tokenizer.from_pretrained('stanfordnlp/SteamSHP-preference-model')
|
73 |
+
>> model = T5ForConditionalGeneration.from_pretrained('stanfordnlp/SteamSHP-preference-model').to(device)
|
74 |
+
|
75 |
+
>> input_text = "POST: Instacart gave me 50 pounds of limes instead of 5 pounds... what the hell do I do with 50 pounds of limes? I've already donated a bunch and gave a bunch away. I'm planning on making a bunch of lime-themed cocktails, but... jeez. Ceviche? \n\n RESPONSE A: Lime juice, and zest, then freeze in small quantities.\n\n RESPONSE B: Lime marmalade lol\n\n Which response is better? RESPONSE"
|
76 |
+
>> x = tokenizer([input_text], return_tensors='pt').input_ids.to(device)
|
77 |
+
>> y = model.generate(x)
|
78 |
+
>> tokenizer.batch_decode(y, skip_special_tokens=True)
|
79 |
+
'A'
|
80 |
```
|
81 |
|
82 |
The input text should be of the format:
|