File size: 23,859 Bytes
8145aa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
2024-03-26 11:38:10,623 ----------------------------------------------------------------------------------------------------
2024-03-26 11:38:10,623 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 11:38:10,623 ----------------------------------------------------------------------------------------------------
2024-03-26 11:38:10,623 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 11:38:10,624 ----------------------------------------------------------------------------------------------------
2024-03-26 11:38:10,624 Train: 758 sentences
2024-03-26 11:38:10,624 (train_with_dev=False, train_with_test=False)
2024-03-26 11:38:10,624 ----------------------------------------------------------------------------------------------------
2024-03-26 11:38:10,624 Training Params:
2024-03-26 11:38:10,624 - learning_rate: "3e-05"
2024-03-26 11:38:10,624 - mini_batch_size: "8"
2024-03-26 11:38:10,624 - max_epochs: "10"
2024-03-26 11:38:10,624 - shuffle: "True"
2024-03-26 11:38:10,624 ----------------------------------------------------------------------------------------------------
2024-03-26 11:38:10,624 Plugins:
2024-03-26 11:38:10,624 - TensorboardLogger
2024-03-26 11:38:10,624 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 11:38:10,624 ----------------------------------------------------------------------------------------------------
2024-03-26 11:38:10,624 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 11:38:10,624 - metric: "('micro avg', 'f1-score')"
2024-03-26 11:38:10,624 ----------------------------------------------------------------------------------------------------
2024-03-26 11:38:10,624 Computation:
2024-03-26 11:38:10,624 - compute on device: cuda:0
2024-03-26 11:38:10,624 - embedding storage: none
2024-03-26 11:38:10,624 ----------------------------------------------------------------------------------------------------
2024-03-26 11:38:10,624 Model training base path: "flair-co-funer-german_bert_base-bs8-e10-lr3e-05-3"
2024-03-26 11:38:10,624 ----------------------------------------------------------------------------------------------------
2024-03-26 11:38:10,624 ----------------------------------------------------------------------------------------------------
2024-03-26 11:38:10,624 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 11:38:12,056 epoch 1 - iter 9/95 - loss 3.00468469 - time (sec): 1.43 - samples/sec: 2227.30 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:38:13,987 epoch 1 - iter 18/95 - loss 2.92881161 - time (sec): 3.36 - samples/sec: 1877.95 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:38:15,931 epoch 1 - iter 27/95 - loss 2.76773785 - time (sec): 5.31 - samples/sec: 1861.61 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:38:17,338 epoch 1 - iter 36/95 - loss 2.60379851 - time (sec): 6.71 - samples/sec: 1884.54 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:38:19,280 epoch 1 - iter 45/95 - loss 2.47709620 - time (sec): 8.66 - samples/sec: 1874.16 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:38:20,693 epoch 1 - iter 54/95 - loss 2.35481628 - time (sec): 10.07 - samples/sec: 1895.68 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:38:21,973 epoch 1 - iter 63/95 - loss 2.24785391 - time (sec): 11.35 - samples/sec: 1924.02 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:38:23,942 epoch 1 - iter 72/95 - loss 2.09969141 - time (sec): 13.32 - samples/sec: 1916.20 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:38:25,948 epoch 1 - iter 81/95 - loss 1.95569193 - time (sec): 15.32 - samples/sec: 1905.21 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:38:27,481 epoch 1 - iter 90/95 - loss 1.84081212 - time (sec): 16.86 - samples/sec: 1927.03 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:38:28,567 ----------------------------------------------------------------------------------------------------
2024-03-26 11:38:28,567 EPOCH 1 done: loss 1.7687 - lr: 0.000028
2024-03-26 11:38:29,421 DEV : loss 0.5348557829856873 - f1-score (micro avg) 0.6468
2024-03-26 11:38:29,423 saving best model
2024-03-26 11:38:29,692 ----------------------------------------------------------------------------------------------------
2024-03-26 11:38:31,120 epoch 2 - iter 9/95 - loss 0.56636333 - time (sec): 1.43 - samples/sec: 1919.48 - lr: 0.000030 - momentum: 0.000000
2024-03-26 11:38:33,005 epoch 2 - iter 18/95 - loss 0.48310807 - time (sec): 3.31 - samples/sec: 1844.25 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:38:34,210 epoch 2 - iter 27/95 - loss 0.47598804 - time (sec): 4.52 - samples/sec: 1899.34 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:38:36,520 epoch 2 - iter 36/95 - loss 0.45006817 - time (sec): 6.83 - samples/sec: 1857.02 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:38:38,497 epoch 2 - iter 45/95 - loss 0.43584834 - time (sec): 8.80 - samples/sec: 1867.64 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:38:40,759 epoch 2 - iter 54/95 - loss 0.42240852 - time (sec): 11.07 - samples/sec: 1833.29 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:38:42,823 epoch 2 - iter 63/95 - loss 0.40358698 - time (sec): 13.13 - samples/sec: 1790.32 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:38:44,393 epoch 2 - iter 72/95 - loss 0.40170925 - time (sec): 14.70 - samples/sec: 1797.04 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:38:45,876 epoch 2 - iter 81/95 - loss 0.40641165 - time (sec): 16.18 - samples/sec: 1820.31 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:38:48,250 epoch 2 - iter 90/95 - loss 0.39195044 - time (sec): 18.56 - samples/sec: 1787.46 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:38:48,909 ----------------------------------------------------------------------------------------------------
2024-03-26 11:38:48,909 EPOCH 2 done: loss 0.3885 - lr: 0.000027
2024-03-26 11:38:49,844 DEV : loss 0.2869340181350708 - f1-score (micro avg) 0.8096
2024-03-26 11:38:49,845 saving best model
2024-03-26 11:38:50,309 ----------------------------------------------------------------------------------------------------
2024-03-26 11:38:51,988 epoch 3 - iter 9/95 - loss 0.21703660 - time (sec): 1.68 - samples/sec: 1779.77 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:38:53,823 epoch 3 - iter 18/95 - loss 0.20441662 - time (sec): 3.51 - samples/sec: 1802.25 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:38:55,060 epoch 3 - iter 27/95 - loss 0.21475983 - time (sec): 4.75 - samples/sec: 1966.73 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:38:56,653 epoch 3 - iter 36/95 - loss 0.20563935 - time (sec): 6.34 - samples/sec: 1958.60 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:38:58,141 epoch 3 - iter 45/95 - loss 0.21041674 - time (sec): 7.83 - samples/sec: 1957.44 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:39:00,188 epoch 3 - iter 54/95 - loss 0.20554863 - time (sec): 9.88 - samples/sec: 1913.23 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:39:02,236 epoch 3 - iter 63/95 - loss 0.20061276 - time (sec): 11.93 - samples/sec: 1866.68 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:39:04,124 epoch 3 - iter 72/95 - loss 0.20369030 - time (sec): 13.81 - samples/sec: 1851.62 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:39:06,179 epoch 3 - iter 81/95 - loss 0.19527871 - time (sec): 15.87 - samples/sec: 1826.89 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:39:08,208 epoch 3 - iter 90/95 - loss 0.20474082 - time (sec): 17.90 - samples/sec: 1826.75 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:39:09,343 ----------------------------------------------------------------------------------------------------
2024-03-26 11:39:09,343 EPOCH 3 done: loss 0.2006 - lr: 0.000024
2024-03-26 11:39:10,283 DEV : loss 0.22436510026454926 - f1-score (micro avg) 0.8601
2024-03-26 11:39:10,284 saving best model
2024-03-26 11:39:10,721 ----------------------------------------------------------------------------------------------------
2024-03-26 11:39:12,045 epoch 4 - iter 9/95 - loss 0.15904831 - time (sec): 1.32 - samples/sec: 2097.94 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:39:13,966 epoch 4 - iter 18/95 - loss 0.13585153 - time (sec): 3.24 - samples/sec: 1894.27 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:39:16,032 epoch 4 - iter 27/95 - loss 0.14408454 - time (sec): 5.31 - samples/sec: 1818.35 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:39:17,579 epoch 4 - iter 36/95 - loss 0.13786917 - time (sec): 6.86 - samples/sec: 1829.31 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:39:20,120 epoch 4 - iter 45/95 - loss 0.13153200 - time (sec): 9.40 - samples/sec: 1758.29 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:39:22,024 epoch 4 - iter 54/95 - loss 0.12653534 - time (sec): 11.30 - samples/sec: 1746.17 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:39:24,049 epoch 4 - iter 63/95 - loss 0.12344140 - time (sec): 13.33 - samples/sec: 1725.65 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:39:25,973 epoch 4 - iter 72/95 - loss 0.12630286 - time (sec): 15.25 - samples/sec: 1744.48 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:39:28,035 epoch 4 - iter 81/95 - loss 0.13168865 - time (sec): 17.31 - samples/sec: 1746.30 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:39:29,038 epoch 4 - iter 90/95 - loss 0.13058662 - time (sec): 18.32 - samples/sec: 1785.53 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:39:30,083 ----------------------------------------------------------------------------------------------------
2024-03-26 11:39:30,083 EPOCH 4 done: loss 0.1294 - lr: 0.000020
2024-03-26 11:39:31,013 DEV : loss 0.19798463582992554 - f1-score (micro avg) 0.8867
2024-03-26 11:39:31,014 saving best model
2024-03-26 11:39:31,447 ----------------------------------------------------------------------------------------------------
2024-03-26 11:39:33,430 epoch 5 - iter 9/95 - loss 0.10970783 - time (sec): 1.98 - samples/sec: 1733.87 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:39:34,886 epoch 5 - iter 18/95 - loss 0.10381087 - time (sec): 3.44 - samples/sec: 1820.09 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:39:36,269 epoch 5 - iter 27/95 - loss 0.10324233 - time (sec): 4.82 - samples/sec: 1873.54 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:39:38,219 epoch 5 - iter 36/95 - loss 0.10862119 - time (sec): 6.77 - samples/sec: 1812.61 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:39:40,531 epoch 5 - iter 45/95 - loss 0.10336276 - time (sec): 9.08 - samples/sec: 1792.35 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:39:43,050 epoch 5 - iter 54/95 - loss 0.09777919 - time (sec): 11.60 - samples/sec: 1750.74 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:39:44,772 epoch 5 - iter 63/95 - loss 0.09605003 - time (sec): 13.32 - samples/sec: 1743.65 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:39:46,623 epoch 5 - iter 72/95 - loss 0.09405670 - time (sec): 15.17 - samples/sec: 1742.78 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:39:48,974 epoch 5 - iter 81/95 - loss 0.09408093 - time (sec): 17.53 - samples/sec: 1721.72 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:39:50,415 epoch 5 - iter 90/95 - loss 0.09570225 - time (sec): 18.97 - samples/sec: 1737.72 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:39:51,218 ----------------------------------------------------------------------------------------------------
2024-03-26 11:39:51,218 EPOCH 5 done: loss 0.0938 - lr: 0.000017
2024-03-26 11:39:52,179 DEV : loss 0.1974947303533554 - f1-score (micro avg) 0.9042
2024-03-26 11:39:52,180 saving best model
2024-03-26 11:39:52,617 ----------------------------------------------------------------------------------------------------
2024-03-26 11:39:54,589 epoch 6 - iter 9/95 - loss 0.07217050 - time (sec): 1.97 - samples/sec: 1769.07 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:39:56,183 epoch 6 - iter 18/95 - loss 0.07321513 - time (sec): 3.57 - samples/sec: 1783.75 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:39:58,140 epoch 6 - iter 27/95 - loss 0.07237570 - time (sec): 5.52 - samples/sec: 1790.40 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:39:59,762 epoch 6 - iter 36/95 - loss 0.07303326 - time (sec): 7.14 - samples/sec: 1784.81 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:40:01,242 epoch 6 - iter 45/95 - loss 0.07181887 - time (sec): 8.62 - samples/sec: 1823.24 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:40:02,728 epoch 6 - iter 54/95 - loss 0.06802721 - time (sec): 10.11 - samples/sec: 1821.72 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:40:04,048 epoch 6 - iter 63/95 - loss 0.06640286 - time (sec): 11.43 - samples/sec: 1880.83 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:40:06,394 epoch 6 - iter 72/95 - loss 0.07238628 - time (sec): 13.78 - samples/sec: 1843.19 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:40:08,029 epoch 6 - iter 81/95 - loss 0.06982111 - time (sec): 15.41 - samples/sec: 1859.26 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:40:09,787 epoch 6 - iter 90/95 - loss 0.07240808 - time (sec): 17.17 - samples/sec: 1877.24 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:40:11,168 ----------------------------------------------------------------------------------------------------
2024-03-26 11:40:11,168 EPOCH 6 done: loss 0.0733 - lr: 0.000014
2024-03-26 11:40:12,142 DEV : loss 0.20535056293010712 - f1-score (micro avg) 0.9062
2024-03-26 11:40:12,143 saving best model
2024-03-26 11:40:12,585 ----------------------------------------------------------------------------------------------------
2024-03-26 11:40:14,631 epoch 7 - iter 9/95 - loss 0.06137997 - time (sec): 2.05 - samples/sec: 1553.04 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:40:16,692 epoch 7 - iter 18/95 - loss 0.04583919 - time (sec): 4.11 - samples/sec: 1596.53 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:40:18,293 epoch 7 - iter 27/95 - loss 0.04102055 - time (sec): 5.71 - samples/sec: 1714.12 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:40:20,332 epoch 7 - iter 36/95 - loss 0.04230142 - time (sec): 7.75 - samples/sec: 1701.02 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:40:22,736 epoch 7 - iter 45/95 - loss 0.04534105 - time (sec): 10.15 - samples/sec: 1708.38 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:40:24,299 epoch 7 - iter 54/95 - loss 0.04383378 - time (sec): 11.71 - samples/sec: 1717.39 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:40:26,549 epoch 7 - iter 63/95 - loss 0.04715345 - time (sec): 13.96 - samples/sec: 1724.72 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:40:28,393 epoch 7 - iter 72/95 - loss 0.05266698 - time (sec): 15.81 - samples/sec: 1731.80 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:40:29,865 epoch 7 - iter 81/95 - loss 0.04998609 - time (sec): 17.28 - samples/sec: 1743.30 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:40:31,962 epoch 7 - iter 90/95 - loss 0.05320010 - time (sec): 19.38 - samples/sec: 1719.17 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:40:32,440 ----------------------------------------------------------------------------------------------------
2024-03-26 11:40:32,441 EPOCH 7 done: loss 0.0533 - lr: 0.000010
2024-03-26 11:40:33,404 DEV : loss 0.1789586842060089 - f1-score (micro avg) 0.9121
2024-03-26 11:40:33,405 saving best model
2024-03-26 11:40:33,834 ----------------------------------------------------------------------------------------------------
2024-03-26 11:40:35,732 epoch 8 - iter 9/95 - loss 0.03467893 - time (sec): 1.90 - samples/sec: 1690.13 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:40:38,308 epoch 8 - iter 18/95 - loss 0.02789460 - time (sec): 4.47 - samples/sec: 1656.17 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:40:40,169 epoch 8 - iter 27/95 - loss 0.02442571 - time (sec): 6.33 - samples/sec: 1680.13 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:40:41,782 epoch 8 - iter 36/95 - loss 0.02717416 - time (sec): 7.95 - samples/sec: 1668.45 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:40:43,339 epoch 8 - iter 45/95 - loss 0.02552008 - time (sec): 9.50 - samples/sec: 1699.36 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:40:45,064 epoch 8 - iter 54/95 - loss 0.02682554 - time (sec): 11.23 - samples/sec: 1717.91 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:40:47,330 epoch 8 - iter 63/95 - loss 0.03473284 - time (sec): 13.50 - samples/sec: 1714.85 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:40:49,691 epoch 8 - iter 72/95 - loss 0.04004587 - time (sec): 15.86 - samples/sec: 1692.57 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:40:51,432 epoch 8 - iter 81/95 - loss 0.04672366 - time (sec): 17.60 - samples/sec: 1692.79 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:40:52,756 epoch 8 - iter 90/95 - loss 0.04625643 - time (sec): 18.92 - samples/sec: 1735.25 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:40:53,691 ----------------------------------------------------------------------------------------------------
2024-03-26 11:40:53,691 EPOCH 8 done: loss 0.0449 - lr: 0.000007
2024-03-26 11:40:54,627 DEV : loss 0.20146656036376953 - f1-score (micro avg) 0.913
2024-03-26 11:40:54,628 saving best model
2024-03-26 11:40:55,073 ----------------------------------------------------------------------------------------------------
2024-03-26 11:40:57,083 epoch 9 - iter 9/95 - loss 0.01238365 - time (sec): 2.01 - samples/sec: 1755.11 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:40:58,881 epoch 9 - iter 18/95 - loss 0.02759052 - time (sec): 3.81 - samples/sec: 1758.22 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:41:00,905 epoch 9 - iter 27/95 - loss 0.02758322 - time (sec): 5.83 - samples/sec: 1752.05 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:41:02,853 epoch 9 - iter 36/95 - loss 0.02846974 - time (sec): 7.78 - samples/sec: 1746.04 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:41:05,177 epoch 9 - iter 45/95 - loss 0.02677424 - time (sec): 10.10 - samples/sec: 1677.81 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:41:07,176 epoch 9 - iter 54/95 - loss 0.03171239 - time (sec): 12.10 - samples/sec: 1668.11 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:41:09,138 epoch 9 - iter 63/95 - loss 0.03114385 - time (sec): 14.06 - samples/sec: 1678.90 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:41:11,164 epoch 9 - iter 72/95 - loss 0.03333336 - time (sec): 16.09 - samples/sec: 1674.88 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:41:12,456 epoch 9 - iter 81/95 - loss 0.03525355 - time (sec): 17.38 - samples/sec: 1698.51 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:41:13,929 epoch 9 - iter 90/95 - loss 0.03895801 - time (sec): 18.86 - samples/sec: 1718.89 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:41:14,915 ----------------------------------------------------------------------------------------------------
2024-03-26 11:41:14,915 EPOCH 9 done: loss 0.0384 - lr: 0.000004
2024-03-26 11:41:15,903 DEV : loss 0.21197910606861115 - f1-score (micro avg) 0.92
2024-03-26 11:41:15,904 saving best model
2024-03-26 11:41:16,343 ----------------------------------------------------------------------------------------------------
2024-03-26 11:41:18,547 epoch 10 - iter 9/95 - loss 0.01499061 - time (sec): 2.20 - samples/sec: 1730.24 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:41:19,860 epoch 10 - iter 18/95 - loss 0.01541849 - time (sec): 3.52 - samples/sec: 1841.02 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:41:21,230 epoch 10 - iter 27/95 - loss 0.03534289 - time (sec): 4.89 - samples/sec: 1940.76 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:41:22,652 epoch 10 - iter 36/95 - loss 0.03443000 - time (sec): 6.31 - samples/sec: 1955.29 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:41:24,582 epoch 10 - iter 45/95 - loss 0.02965463 - time (sec): 8.24 - samples/sec: 1933.09 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:41:26,272 epoch 10 - iter 54/95 - loss 0.02812516 - time (sec): 9.93 - samples/sec: 1909.42 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:41:28,862 epoch 10 - iter 63/95 - loss 0.02903030 - time (sec): 12.52 - samples/sec: 1836.54 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:41:30,168 epoch 10 - iter 72/95 - loss 0.02845424 - time (sec): 13.82 - samples/sec: 1844.54 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:41:32,604 epoch 10 - iter 81/95 - loss 0.02695920 - time (sec): 16.26 - samples/sec: 1791.40 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:41:34,895 epoch 10 - iter 90/95 - loss 0.03168106 - time (sec): 18.55 - samples/sec: 1772.73 - lr: 0.000000 - momentum: 0.000000
2024-03-26 11:41:35,996 ----------------------------------------------------------------------------------------------------
2024-03-26 11:41:35,996 EPOCH 10 done: loss 0.0322 - lr: 0.000000
2024-03-26 11:41:36,940 DEV : loss 0.2103956937789917 - f1-score (micro avg) 0.9207
2024-03-26 11:41:36,942 saving best model
2024-03-26 11:41:37,656 ----------------------------------------------------------------------------------------------------
2024-03-26 11:41:37,657 Loading model from best epoch ...
2024-03-26 11:41:38,536 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 11:41:39,309
Results:
- F-score (micro) 0.9048
- F-score (macro) 0.6892
- Accuracy 0.8285
By class:
precision recall f1-score support
Unternehmen 0.8792 0.8759 0.8776 266
Auslagerung 0.8736 0.9157 0.8941 249
Ort 0.9779 0.9925 0.9852 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8946 0.9153 0.9048 649
macro avg 0.6827 0.6960 0.6892 649
weighted avg 0.8974 0.9153 0.9061 649
2024-03-26 11:41:39,309 ----------------------------------------------------------------------------------------------------
|