File size: 26,580 Bytes
4216430 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
2024-03-26 15:35:37,399 ----------------------------------------------------------------------------------------------------
2024-03-26 15:35:37,399 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 15:35:37,399 ----------------------------------------------------------------------------------------------------
2024-03-26 15:35:37,399 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 15:35:37,399 ----------------------------------------------------------------------------------------------------
2024-03-26 15:35:37,399 Train: 758 sentences
2024-03-26 15:35:37,399 (train_with_dev=False, train_with_test=False)
2024-03-26 15:35:37,399 ----------------------------------------------------------------------------------------------------
2024-03-26 15:35:37,400 Training Params:
2024-03-26 15:35:37,400 - learning_rate: "5e-05"
2024-03-26 15:35:37,400 - mini_batch_size: "16"
2024-03-26 15:35:37,400 - max_epochs: "10"
2024-03-26 15:35:37,400 - shuffle: "True"
2024-03-26 15:35:37,400 ----------------------------------------------------------------------------------------------------
2024-03-26 15:35:37,400 Plugins:
2024-03-26 15:35:37,400 - TensorboardLogger
2024-03-26 15:35:37,400 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 15:35:37,400 ----------------------------------------------------------------------------------------------------
2024-03-26 15:35:37,400 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 15:35:37,400 - metric: "('micro avg', 'f1-score')"
2024-03-26 15:35:37,400 ----------------------------------------------------------------------------------------------------
2024-03-26 15:35:37,400 Computation:
2024-03-26 15:35:37,400 - compute on device: cuda:0
2024-03-26 15:35:37,400 - embedding storage: none
2024-03-26 15:35:37,400 ----------------------------------------------------------------------------------------------------
2024-03-26 15:35:37,400 Model training base path: "flair-co-funer-german_dbmdz_bert_base-bs16-e10-lr5e-05-2"
2024-03-26 15:35:37,400 ----------------------------------------------------------------------------------------------------
2024-03-26 15:35:37,400 ----------------------------------------------------------------------------------------------------
2024-03-26 15:35:37,400 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 15:35:39,129 epoch 1 - iter 4/48 - loss 3.07312460 - time (sec): 1.73 - samples/sec: 1747.50 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:35:41,228 epoch 1 - iter 8/48 - loss 3.02312743 - time (sec): 3.83 - samples/sec: 1621.91 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:35:43,070 epoch 1 - iter 12/48 - loss 2.90188608 - time (sec): 5.67 - samples/sec: 1572.17 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:35:45,086 epoch 1 - iter 16/48 - loss 2.72233276 - time (sec): 7.69 - samples/sec: 1578.74 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:35:47,278 epoch 1 - iter 20/48 - loss 2.59399868 - time (sec): 9.88 - samples/sec: 1546.98 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:35:50,308 epoch 1 - iter 24/48 - loss 2.48249883 - time (sec): 12.91 - samples/sec: 1408.32 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:35:52,713 epoch 1 - iter 28/48 - loss 2.35935279 - time (sec): 15.31 - samples/sec: 1391.83 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:35:53,539 epoch 1 - iter 32/48 - loss 2.28426536 - time (sec): 16.14 - samples/sec: 1446.85 - lr: 0.000032 - momentum: 0.000000
2024-03-26 15:35:54,806 epoch 1 - iter 36/48 - loss 2.18399143 - time (sec): 17.41 - samples/sec: 1502.43 - lr: 0.000036 - momentum: 0.000000
2024-03-26 15:35:56,683 epoch 1 - iter 40/48 - loss 2.08833547 - time (sec): 19.28 - samples/sec: 1508.62 - lr: 0.000041 - momentum: 0.000000
2024-03-26 15:35:58,574 epoch 1 - iter 44/48 - loss 1.98854010 - time (sec): 21.17 - samples/sec: 1509.00 - lr: 0.000045 - momentum: 0.000000
2024-03-26 15:35:59,934 epoch 1 - iter 48/48 - loss 1.90654993 - time (sec): 22.53 - samples/sec: 1529.80 - lr: 0.000049 - momentum: 0.000000
2024-03-26 15:35:59,934 ----------------------------------------------------------------------------------------------------
2024-03-26 15:35:59,934 EPOCH 1 done: loss 1.9065 - lr: 0.000049
2024-03-26 15:36:00,761 DEV : loss 0.6141952276229858 - f1-score (micro avg) 0.6085
2024-03-26 15:36:00,762 saving best model
2024-03-26 15:36:01,041 ----------------------------------------------------------------------------------------------------
2024-03-26 15:36:02,355 epoch 2 - iter 4/48 - loss 0.87011800 - time (sec): 1.31 - samples/sec: 2207.91 - lr: 0.000050 - momentum: 0.000000
2024-03-26 15:36:04,190 epoch 2 - iter 8/48 - loss 0.71306806 - time (sec): 3.15 - samples/sec: 1936.50 - lr: 0.000049 - momentum: 0.000000
2024-03-26 15:36:07,606 epoch 2 - iter 12/48 - loss 0.60363924 - time (sec): 6.56 - samples/sec: 1550.38 - lr: 0.000049 - momentum: 0.000000
2024-03-26 15:36:10,070 epoch 2 - iter 16/48 - loss 0.55894177 - time (sec): 9.03 - samples/sec: 1475.29 - lr: 0.000048 - momentum: 0.000000
2024-03-26 15:36:12,701 epoch 2 - iter 20/48 - loss 0.52394312 - time (sec): 11.66 - samples/sec: 1424.73 - lr: 0.000048 - momentum: 0.000000
2024-03-26 15:36:14,572 epoch 2 - iter 24/48 - loss 0.49100232 - time (sec): 13.53 - samples/sec: 1424.89 - lr: 0.000047 - momentum: 0.000000
2024-03-26 15:36:16,335 epoch 2 - iter 28/48 - loss 0.48803275 - time (sec): 15.29 - samples/sec: 1434.06 - lr: 0.000047 - momentum: 0.000000
2024-03-26 15:36:18,033 epoch 2 - iter 32/48 - loss 0.47732716 - time (sec): 16.99 - samples/sec: 1448.04 - lr: 0.000046 - momentum: 0.000000
2024-03-26 15:36:19,866 epoch 2 - iter 36/48 - loss 0.46725186 - time (sec): 18.82 - samples/sec: 1457.25 - lr: 0.000046 - momentum: 0.000000
2024-03-26 15:36:20,877 epoch 2 - iter 40/48 - loss 0.45840695 - time (sec): 19.84 - samples/sec: 1504.95 - lr: 0.000046 - momentum: 0.000000
2024-03-26 15:36:22,299 epoch 2 - iter 44/48 - loss 0.45495518 - time (sec): 21.26 - samples/sec: 1524.90 - lr: 0.000045 - momentum: 0.000000
2024-03-26 15:36:23,817 epoch 2 - iter 48/48 - loss 0.44213553 - time (sec): 22.78 - samples/sec: 1513.57 - lr: 0.000045 - momentum: 0.000000
2024-03-26 15:36:23,817 ----------------------------------------------------------------------------------------------------
2024-03-26 15:36:23,817 EPOCH 2 done: loss 0.4421 - lr: 0.000045
2024-03-26 15:36:24,712 DEV : loss 0.27931642532348633 - f1-score (micro avg) 0.8352
2024-03-26 15:36:24,713 saving best model
2024-03-26 15:36:25,138 ----------------------------------------------------------------------------------------------------
2024-03-26 15:36:27,686 epoch 3 - iter 4/48 - loss 0.23770738 - time (sec): 2.55 - samples/sec: 1181.16 - lr: 0.000044 - momentum: 0.000000
2024-03-26 15:36:29,820 epoch 3 - iter 8/48 - loss 0.24600668 - time (sec): 4.68 - samples/sec: 1356.26 - lr: 0.000044 - momentum: 0.000000
2024-03-26 15:36:31,393 epoch 3 - iter 12/48 - loss 0.26325747 - time (sec): 6.25 - samples/sec: 1418.43 - lr: 0.000043 - momentum: 0.000000
2024-03-26 15:36:33,129 epoch 3 - iter 16/48 - loss 0.25250839 - time (sec): 7.99 - samples/sec: 1422.30 - lr: 0.000043 - momentum: 0.000000
2024-03-26 15:36:34,277 epoch 3 - iter 20/48 - loss 0.25207231 - time (sec): 9.14 - samples/sec: 1497.09 - lr: 0.000042 - momentum: 0.000000
2024-03-26 15:36:36,117 epoch 3 - iter 24/48 - loss 0.25814835 - time (sec): 10.98 - samples/sec: 1498.80 - lr: 0.000042 - momentum: 0.000000
2024-03-26 15:36:38,561 epoch 3 - iter 28/48 - loss 0.25191411 - time (sec): 13.42 - samples/sec: 1441.34 - lr: 0.000041 - momentum: 0.000000
2024-03-26 15:36:40,411 epoch 3 - iter 32/48 - loss 0.25103396 - time (sec): 15.27 - samples/sec: 1449.61 - lr: 0.000041 - momentum: 0.000000
2024-03-26 15:36:41,841 epoch 3 - iter 36/48 - loss 0.24492805 - time (sec): 16.70 - samples/sec: 1483.48 - lr: 0.000040 - momentum: 0.000000
2024-03-26 15:36:44,097 epoch 3 - iter 40/48 - loss 0.23624108 - time (sec): 18.96 - samples/sec: 1456.23 - lr: 0.000040 - momentum: 0.000000
2024-03-26 15:36:47,342 epoch 3 - iter 44/48 - loss 0.21763247 - time (sec): 22.20 - samples/sec: 1451.22 - lr: 0.000040 - momentum: 0.000000
2024-03-26 15:36:48,594 epoch 3 - iter 48/48 - loss 0.21155181 - time (sec): 23.46 - samples/sec: 1469.64 - lr: 0.000039 - momentum: 0.000000
2024-03-26 15:36:48,594 ----------------------------------------------------------------------------------------------------
2024-03-26 15:36:48,595 EPOCH 3 done: loss 0.2116 - lr: 0.000039
2024-03-26 15:36:49,505 DEV : loss 0.2284693866968155 - f1-score (micro avg) 0.8693
2024-03-26 15:36:49,507 saving best model
2024-03-26 15:36:49,846 ----------------------------------------------------------------------------------------------------
2024-03-26 15:36:51,395 epoch 4 - iter 4/48 - loss 0.21854109 - time (sec): 1.55 - samples/sec: 1646.04 - lr: 0.000039 - momentum: 0.000000
2024-03-26 15:36:53,687 epoch 4 - iter 8/48 - loss 0.17963265 - time (sec): 3.84 - samples/sec: 1560.36 - lr: 0.000038 - momentum: 0.000000
2024-03-26 15:36:54,940 epoch 4 - iter 12/48 - loss 0.16487773 - time (sec): 5.09 - samples/sec: 1641.00 - lr: 0.000038 - momentum: 0.000000
2024-03-26 15:36:57,158 epoch 4 - iter 16/48 - loss 0.16632533 - time (sec): 7.31 - samples/sec: 1541.83 - lr: 0.000037 - momentum: 0.000000
2024-03-26 15:36:59,682 epoch 4 - iter 20/48 - loss 0.15573120 - time (sec): 9.84 - samples/sec: 1421.53 - lr: 0.000037 - momentum: 0.000000
2024-03-26 15:37:01,688 epoch 4 - iter 24/48 - loss 0.16003533 - time (sec): 11.84 - samples/sec: 1421.61 - lr: 0.000036 - momentum: 0.000000
2024-03-26 15:37:03,790 epoch 4 - iter 28/48 - loss 0.15561340 - time (sec): 13.94 - samples/sec: 1426.73 - lr: 0.000036 - momentum: 0.000000
2024-03-26 15:37:06,333 epoch 4 - iter 32/48 - loss 0.15475400 - time (sec): 16.49 - samples/sec: 1398.72 - lr: 0.000035 - momentum: 0.000000
2024-03-26 15:37:09,125 epoch 4 - iter 36/48 - loss 0.14633806 - time (sec): 19.28 - samples/sec: 1387.54 - lr: 0.000035 - momentum: 0.000000
2024-03-26 15:37:10,806 epoch 4 - iter 40/48 - loss 0.14249669 - time (sec): 20.96 - samples/sec: 1388.09 - lr: 0.000034 - momentum: 0.000000
2024-03-26 15:37:12,785 epoch 4 - iter 44/48 - loss 0.14215231 - time (sec): 22.94 - samples/sec: 1391.66 - lr: 0.000034 - momentum: 0.000000
2024-03-26 15:37:14,435 epoch 4 - iter 48/48 - loss 0.14147744 - time (sec): 24.59 - samples/sec: 1401.96 - lr: 0.000034 - momentum: 0.000000
2024-03-26 15:37:14,435 ----------------------------------------------------------------------------------------------------
2024-03-26 15:37:14,435 EPOCH 4 done: loss 0.1415 - lr: 0.000034
2024-03-26 15:37:15,389 DEV : loss 0.19012174010276794 - f1-score (micro avg) 0.8841
2024-03-26 15:37:15,390 saving best model
2024-03-26 15:37:15,849 ----------------------------------------------------------------------------------------------------
2024-03-26 15:37:16,676 epoch 5 - iter 4/48 - loss 0.08789891 - time (sec): 0.83 - samples/sec: 2218.69 - lr: 0.000033 - momentum: 0.000000
2024-03-26 15:37:18,049 epoch 5 - iter 8/48 - loss 0.10372291 - time (sec): 2.20 - samples/sec: 2022.02 - lr: 0.000033 - momentum: 0.000000
2024-03-26 15:37:20,792 epoch 5 - iter 12/48 - loss 0.10462130 - time (sec): 4.94 - samples/sec: 1614.72 - lr: 0.000032 - momentum: 0.000000
2024-03-26 15:37:23,739 epoch 5 - iter 16/48 - loss 0.10346493 - time (sec): 7.89 - samples/sec: 1430.45 - lr: 0.000032 - momentum: 0.000000
2024-03-26 15:37:25,113 epoch 5 - iter 20/48 - loss 0.10655057 - time (sec): 9.26 - samples/sec: 1481.95 - lr: 0.000031 - momentum: 0.000000
2024-03-26 15:37:27,556 epoch 5 - iter 24/48 - loss 0.10142190 - time (sec): 11.71 - samples/sec: 1431.31 - lr: 0.000031 - momentum: 0.000000
2024-03-26 15:37:29,621 epoch 5 - iter 28/48 - loss 0.09756151 - time (sec): 13.77 - samples/sec: 1418.78 - lr: 0.000030 - momentum: 0.000000
2024-03-26 15:37:31,861 epoch 5 - iter 32/48 - loss 0.10117255 - time (sec): 16.01 - samples/sec: 1446.65 - lr: 0.000030 - momentum: 0.000000
2024-03-26 15:37:33,318 epoch 5 - iter 36/48 - loss 0.10485977 - time (sec): 17.47 - samples/sec: 1470.52 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:37:35,840 epoch 5 - iter 40/48 - loss 0.10064567 - time (sec): 19.99 - samples/sec: 1421.19 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:37:37,913 epoch 5 - iter 44/48 - loss 0.10009326 - time (sec): 22.06 - samples/sec: 1433.90 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:37:39,864 epoch 5 - iter 48/48 - loss 0.09969822 - time (sec): 24.01 - samples/sec: 1435.48 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:37:39,864 ----------------------------------------------------------------------------------------------------
2024-03-26 15:37:39,864 EPOCH 5 done: loss 0.0997 - lr: 0.000028
2024-03-26 15:37:40,791 DEV : loss 0.18266673386096954 - f1-score (micro avg) 0.9049
2024-03-26 15:37:40,792 saving best model
2024-03-26 15:37:41,245 ----------------------------------------------------------------------------------------------------
2024-03-26 15:37:42,823 epoch 6 - iter 4/48 - loss 0.07595299 - time (sec): 1.58 - samples/sec: 1577.51 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:37:45,221 epoch 6 - iter 8/48 - loss 0.06704105 - time (sec): 3.98 - samples/sec: 1609.57 - lr: 0.000027 - momentum: 0.000000
2024-03-26 15:37:47,160 epoch 6 - iter 12/48 - loss 0.07042495 - time (sec): 5.91 - samples/sec: 1531.43 - lr: 0.000027 - momentum: 0.000000
2024-03-26 15:37:49,173 epoch 6 - iter 16/48 - loss 0.06567751 - time (sec): 7.93 - samples/sec: 1529.66 - lr: 0.000026 - momentum: 0.000000
2024-03-26 15:37:51,930 epoch 6 - iter 20/48 - loss 0.06815485 - time (sec): 10.68 - samples/sec: 1495.20 - lr: 0.000026 - momentum: 0.000000
2024-03-26 15:37:53,436 epoch 6 - iter 24/48 - loss 0.08123693 - time (sec): 12.19 - samples/sec: 1518.39 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:37:54,805 epoch 6 - iter 28/48 - loss 0.08036052 - time (sec): 13.56 - samples/sec: 1524.21 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:37:55,977 epoch 6 - iter 32/48 - loss 0.07729706 - time (sec): 14.73 - samples/sec: 1544.29 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:37:57,449 epoch 6 - iter 36/48 - loss 0.07336392 - time (sec): 16.20 - samples/sec: 1575.73 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:37:59,355 epoch 6 - iter 40/48 - loss 0.07524986 - time (sec): 18.11 - samples/sec: 1564.82 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:38:01,541 epoch 6 - iter 44/48 - loss 0.07188943 - time (sec): 20.30 - samples/sec: 1584.31 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:38:03,193 epoch 6 - iter 48/48 - loss 0.07191073 - time (sec): 21.95 - samples/sec: 1570.65 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:38:03,193 ----------------------------------------------------------------------------------------------------
2024-03-26 15:38:03,193 EPOCH 6 done: loss 0.0719 - lr: 0.000023
2024-03-26 15:38:04,109 DEV : loss 0.1665915995836258 - f1-score (micro avg) 0.9167
2024-03-26 15:38:04,112 saving best model
2024-03-26 15:38:04,559 ----------------------------------------------------------------------------------------------------
2024-03-26 15:38:06,165 epoch 7 - iter 4/48 - loss 0.04465727 - time (sec): 1.61 - samples/sec: 1516.59 - lr: 0.000022 - momentum: 0.000000
2024-03-26 15:38:07,765 epoch 7 - iter 8/48 - loss 0.04957911 - time (sec): 3.21 - samples/sec: 1545.12 - lr: 0.000022 - momentum: 0.000000
2024-03-26 15:38:09,870 epoch 7 - iter 12/48 - loss 0.05129160 - time (sec): 5.31 - samples/sec: 1482.12 - lr: 0.000021 - momentum: 0.000000
2024-03-26 15:38:11,884 epoch 7 - iter 16/48 - loss 0.05015252 - time (sec): 7.32 - samples/sec: 1521.02 - lr: 0.000021 - momentum: 0.000000
2024-03-26 15:38:12,528 epoch 7 - iter 20/48 - loss 0.04819502 - time (sec): 7.97 - samples/sec: 1626.30 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:38:14,111 epoch 7 - iter 24/48 - loss 0.04851626 - time (sec): 9.55 - samples/sec: 1604.11 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:38:16,961 epoch 7 - iter 28/48 - loss 0.04755189 - time (sec): 12.40 - samples/sec: 1501.74 - lr: 0.000019 - momentum: 0.000000
2024-03-26 15:38:19,717 epoch 7 - iter 32/48 - loss 0.04786266 - time (sec): 15.16 - samples/sec: 1429.36 - lr: 0.000019 - momentum: 0.000000
2024-03-26 15:38:22,448 epoch 7 - iter 36/48 - loss 0.05400353 - time (sec): 17.89 - samples/sec: 1441.13 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:38:24,410 epoch 7 - iter 40/48 - loss 0.05744225 - time (sec): 19.85 - samples/sec: 1448.16 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:38:26,939 epoch 7 - iter 44/48 - loss 0.05714303 - time (sec): 22.38 - samples/sec: 1423.34 - lr: 0.000017 - momentum: 0.000000
2024-03-26 15:38:28,677 epoch 7 - iter 48/48 - loss 0.05577251 - time (sec): 24.12 - samples/sec: 1429.34 - lr: 0.000017 - momentum: 0.000000
2024-03-26 15:38:28,677 ----------------------------------------------------------------------------------------------------
2024-03-26 15:38:28,677 EPOCH 7 done: loss 0.0558 - lr: 0.000017
2024-03-26 15:38:29,574 DEV : loss 0.17425081133842468 - f1-score (micro avg) 0.9086
2024-03-26 15:38:29,575 ----------------------------------------------------------------------------------------------------
2024-03-26 15:38:32,285 epoch 8 - iter 4/48 - loss 0.04358600 - time (sec): 2.71 - samples/sec: 1218.69 - lr: 0.000017 - momentum: 0.000000
2024-03-26 15:38:34,337 epoch 8 - iter 8/48 - loss 0.03704583 - time (sec): 4.76 - samples/sec: 1232.18 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:38:37,518 epoch 8 - iter 12/48 - loss 0.04307949 - time (sec): 7.94 - samples/sec: 1220.10 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:38:39,444 epoch 8 - iter 16/48 - loss 0.04750863 - time (sec): 9.87 - samples/sec: 1250.67 - lr: 0.000015 - momentum: 0.000000
2024-03-26 15:38:40,896 epoch 8 - iter 20/48 - loss 0.04531580 - time (sec): 11.32 - samples/sec: 1297.20 - lr: 0.000015 - momentum: 0.000000
2024-03-26 15:38:43,316 epoch 8 - iter 24/48 - loss 0.04591327 - time (sec): 13.74 - samples/sec: 1298.64 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:38:45,068 epoch 8 - iter 28/48 - loss 0.04770562 - time (sec): 15.49 - samples/sec: 1334.70 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:38:46,725 epoch 8 - iter 32/48 - loss 0.04682980 - time (sec): 17.15 - samples/sec: 1356.50 - lr: 0.000013 - momentum: 0.000000
2024-03-26 15:38:48,007 epoch 8 - iter 36/48 - loss 0.04495140 - time (sec): 18.43 - samples/sec: 1387.94 - lr: 0.000013 - momentum: 0.000000
2024-03-26 15:38:50,333 epoch 8 - iter 40/48 - loss 0.04489026 - time (sec): 20.76 - samples/sec: 1396.76 - lr: 0.000012 - momentum: 0.000000
2024-03-26 15:38:53,143 epoch 8 - iter 44/48 - loss 0.04213215 - time (sec): 23.57 - samples/sec: 1367.02 - lr: 0.000012 - momentum: 0.000000
2024-03-26 15:38:55,050 epoch 8 - iter 48/48 - loss 0.04244810 - time (sec): 25.47 - samples/sec: 1353.19 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:38:55,050 ----------------------------------------------------------------------------------------------------
2024-03-26 15:38:55,050 EPOCH 8 done: loss 0.0424 - lr: 0.000011
2024-03-26 15:38:55,965 DEV : loss 0.17965388298034668 - f1-score (micro avg) 0.9341
2024-03-26 15:38:55,968 saving best model
2024-03-26 15:38:56,413 ----------------------------------------------------------------------------------------------------
2024-03-26 15:38:58,223 epoch 9 - iter 4/48 - loss 0.04139139 - time (sec): 1.81 - samples/sec: 1571.99 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:39:00,617 epoch 9 - iter 8/48 - loss 0.03244052 - time (sec): 4.20 - samples/sec: 1458.80 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:39:02,946 epoch 9 - iter 12/48 - loss 0.04079715 - time (sec): 6.53 - samples/sec: 1413.06 - lr: 0.000010 - momentum: 0.000000
2024-03-26 15:39:04,985 epoch 9 - iter 16/48 - loss 0.04285224 - time (sec): 8.57 - samples/sec: 1411.16 - lr: 0.000010 - momentum: 0.000000
2024-03-26 15:39:06,428 epoch 9 - iter 20/48 - loss 0.03763700 - time (sec): 10.01 - samples/sec: 1471.63 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:39:07,623 epoch 9 - iter 24/48 - loss 0.03541261 - time (sec): 11.21 - samples/sec: 1519.85 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:39:09,311 epoch 9 - iter 28/48 - loss 0.03426824 - time (sec): 12.90 - samples/sec: 1533.40 - lr: 0.000008 - momentum: 0.000000
2024-03-26 15:39:11,547 epoch 9 - iter 32/48 - loss 0.03918176 - time (sec): 15.13 - samples/sec: 1519.44 - lr: 0.000008 - momentum: 0.000000
2024-03-26 15:39:14,194 epoch 9 - iter 36/48 - loss 0.03880368 - time (sec): 17.78 - samples/sec: 1469.17 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:39:17,077 epoch 9 - iter 40/48 - loss 0.03934873 - time (sec): 20.66 - samples/sec: 1426.36 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:39:18,869 epoch 9 - iter 44/48 - loss 0.03857612 - time (sec): 22.46 - samples/sec: 1441.98 - lr: 0.000006 - momentum: 0.000000
2024-03-26 15:39:19,899 epoch 9 - iter 48/48 - loss 0.03835348 - time (sec): 23.49 - samples/sec: 1467.80 - lr: 0.000006 - momentum: 0.000000
2024-03-26 15:39:19,899 ----------------------------------------------------------------------------------------------------
2024-03-26 15:39:19,899 EPOCH 9 done: loss 0.0384 - lr: 0.000006
2024-03-26 15:39:20,824 DEV : loss 0.17883603274822235 - f1-score (micro avg) 0.9302
2024-03-26 15:39:20,825 ----------------------------------------------------------------------------------------------------
2024-03-26 15:39:23,112 epoch 10 - iter 4/48 - loss 0.01116868 - time (sec): 2.29 - samples/sec: 1443.97 - lr: 0.000006 - momentum: 0.000000
2024-03-26 15:39:25,167 epoch 10 - iter 8/48 - loss 0.01523454 - time (sec): 4.34 - samples/sec: 1422.79 - lr: 0.000005 - momentum: 0.000000
2024-03-26 15:39:27,080 epoch 10 - iter 12/48 - loss 0.01753598 - time (sec): 6.25 - samples/sec: 1410.73 - lr: 0.000005 - momentum: 0.000000
2024-03-26 15:39:28,312 epoch 10 - iter 16/48 - loss 0.01945254 - time (sec): 7.49 - samples/sec: 1471.98 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:39:30,220 epoch 10 - iter 20/48 - loss 0.02580218 - time (sec): 9.39 - samples/sec: 1459.18 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:39:32,429 epoch 10 - iter 24/48 - loss 0.03253601 - time (sec): 11.60 - samples/sec: 1431.13 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:39:33,332 epoch 10 - iter 28/48 - loss 0.03209414 - time (sec): 12.51 - samples/sec: 1502.27 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:39:34,592 epoch 10 - iter 32/48 - loss 0.03112196 - time (sec): 13.77 - samples/sec: 1542.81 - lr: 0.000002 - momentum: 0.000000
2024-03-26 15:39:37,345 epoch 10 - iter 36/48 - loss 0.03026376 - time (sec): 16.52 - samples/sec: 1494.77 - lr: 0.000002 - momentum: 0.000000
2024-03-26 15:39:39,747 epoch 10 - iter 40/48 - loss 0.03004181 - time (sec): 18.92 - samples/sec: 1519.61 - lr: 0.000001 - momentum: 0.000000
2024-03-26 15:39:42,280 epoch 10 - iter 44/48 - loss 0.03015505 - time (sec): 21.46 - samples/sec: 1494.94 - lr: 0.000001 - momentum: 0.000000
2024-03-26 15:39:44,182 epoch 10 - iter 48/48 - loss 0.02958669 - time (sec): 23.36 - samples/sec: 1475.89 - lr: 0.000000 - momentum: 0.000000
2024-03-26 15:39:44,182 ----------------------------------------------------------------------------------------------------
2024-03-26 15:39:44,182 EPOCH 10 done: loss 0.0296 - lr: 0.000000
2024-03-26 15:39:45,108 DEV : loss 0.1830984354019165 - f1-score (micro avg) 0.9301
2024-03-26 15:39:45,404 ----------------------------------------------------------------------------------------------------
2024-03-26 15:39:45,405 Loading model from best epoch ...
2024-03-26 15:39:46,288 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 15:39:47,144
Results:
- F-score (micro) 0.9002
- F-score (macro) 0.6845
- Accuracy 0.8208
By class:
precision recall f1-score support
Unternehmen 0.8817 0.8684 0.8750 266
Auslagerung 0.8702 0.9157 0.8924 249
Ort 0.9565 0.9851 0.9706 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8901 0.9106 0.9002 649
macro avg 0.6771 0.6923 0.6845 649
weighted avg 0.8927 0.9106 0.9014 649
2024-03-26 15:39:47,144 ----------------------------------------------------------------------------------------------------
|