xlstm: add configuration and modeling (own one)
Browse files- configuration_xlstm.py +97 -0
- modeling_xlstm.py +214 -0
configuration_xlstm.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from typing import Any, Dict, Optional
|
3 |
+
|
4 |
+
from dacite import Config as DaciteConfig
|
5 |
+
from dacite import from_dict
|
6 |
+
from omegaconf import OmegaConf
|
7 |
+
from transformers.configuration_utils import PretrainedConfig
|
8 |
+
from xlstm import xLSTMLMModelConfig
|
9 |
+
|
10 |
+
# from .config_presets import xlstm_cfg_map
|
11 |
+
|
12 |
+
|
13 |
+
class xLSTMConfig(PretrainedConfig):
|
14 |
+
"""XLSTM configuration class.
|
15 |
+
We seperate the specific xLSTM model configuration
|
16 |
+
from the rest due to the heavy nesting of the configuration.
|
17 |
+
"""
|
18 |
+
|
19 |
+
model_type = "xlstm"
|
20 |
+
|
21 |
+
def __init__(
|
22 |
+
self, vocab_size: int = 32000, config: Optional[Dict[str, Any]] = None, **kwargs
|
23 |
+
):
|
24 |
+
super().__init__(**kwargs)
|
25 |
+
|
26 |
+
cfg = OmegaConf.create(config)
|
27 |
+
cfg["vocab_size"] = vocab_size
|
28 |
+
for key, value in kwargs.items():
|
29 |
+
cfg[key] = value
|
30 |
+
|
31 |
+
self._xlstm_config = cfg
|
32 |
+
self.vocab_size = vocab_size
|
33 |
+
self.embedding_dim = cfg.get("embedding_dim")
|
34 |
+
self.context_length = cfg.get("context_length")
|
35 |
+
|
36 |
+
def to_xlstm_config(self):
|
37 |
+
return from_dict(
|
38 |
+
data_class=xLSTMLMModelConfig,
|
39 |
+
data=OmegaConf.to_container(self._xlstm_config),
|
40 |
+
config=DaciteConfig(strict=True),
|
41 |
+
)
|
42 |
+
|
43 |
+
def to_dict(self) -> Dict[str, Any]:
|
44 |
+
"""
|
45 |
+
Converts the configuration to a dictionary for serialization.
|
46 |
+
"""
|
47 |
+
output = super().to_dict()
|
48 |
+
output["_xlstm_config"] = OmegaConf.to_container(
|
49 |
+
self._xlstm_config, resolve=True
|
50 |
+
)
|
51 |
+
relevant_keys = [
|
52 |
+
"vocab_size",
|
53 |
+
"embedding_dim",
|
54 |
+
"context_length",
|
55 |
+
"torch_dtype",
|
56 |
+
"_xlstm_config",
|
57 |
+
"transformers_version",
|
58 |
+
"architectures",
|
59 |
+
"model_type",
|
60 |
+
]
|
61 |
+
output_ = output.copy()
|
62 |
+
for key in output.keys():
|
63 |
+
if key not in relevant_keys:
|
64 |
+
output_.pop(key)
|
65 |
+
return output_
|
66 |
+
|
67 |
+
@classmethod
|
68 |
+
def from_dict(cls, config_dict: Dict[str, Any], **kwargs):
|
69 |
+
"""
|
70 |
+
Creates a configuration instance from a dictionary.
|
71 |
+
"""
|
72 |
+
xlstm_config = config_dict.pop("_xlstm_config")
|
73 |
+
vocab_size = config_dict.pop("vocab_size")
|
74 |
+
config = cls(vocab_size=vocab_size, config=xlstm_config)
|
75 |
+
if "auto_map" in config_dict and config_dict["auto_map"]:
|
76 |
+
setattr(config, "auto_map", config_dict.pop("auto_map"))
|
77 |
+
|
78 |
+
# breakpoint()
|
79 |
+
# config.xlstm_config = xlstm_config
|
80 |
+
if "return_unused_kwargs" in kwargs and kwargs["return_unused_kwargs"]:
|
81 |
+
return config, {}
|
82 |
+
|
83 |
+
return config
|
84 |
+
|
85 |
+
def to_json_string(self, *args, **kwargs) -> str:
|
86 |
+
"""
|
87 |
+
Serializes the instance to a JSON string.
|
88 |
+
"""
|
89 |
+
return json.dumps(self.to_dict(), indent=2)
|
90 |
+
|
91 |
+
@classmethod
|
92 |
+
def from_json_string(cls, json_string: str):
|
93 |
+
"""
|
94 |
+
Deserializes the instance from a JSON string.
|
95 |
+
"""
|
96 |
+
config_dict = json.loads(json_string)
|
97 |
+
return cls.from_dict(config_dict)
|
modeling_xlstm.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Sequence, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from transformers import PreTrainedModel
|
6 |
+
from transformers.modeling_outputs import BaseModelOutput, CausalLMOutputWithPast
|
7 |
+
from xlstm.components.init import small_init_init_
|
8 |
+
from xlstm.utils import WeightDecayOptimGroupMixin
|
9 |
+
from xlstm.xlstm_block_stack import xLSTMBlockStack as _xLSTMBlockStack
|
10 |
+
|
11 |
+
from .configuration_xlstm import xLSTMConfig
|
12 |
+
|
13 |
+
|
14 |
+
class xLSTMPreTrainedModel(PreTrainedModel):
|
15 |
+
"""Base class for all models."""
|
16 |
+
|
17 |
+
config_class = xLSTMConfig
|
18 |
+
|
19 |
+
|
20 |
+
class xLSTMBlockStack(_xLSTMBlockStack):
|
21 |
+
"""Small wrapper to expose hidden states"""
|
22 |
+
|
23 |
+
def forward(
|
24 |
+
self, x: torch.Tensor, **kwargs
|
25 |
+
) -> Tuple[torch.Tensor, Sequence[torch.Tensor]]:
|
26 |
+
hidden_states = ()
|
27 |
+
for block in self.blocks:
|
28 |
+
x = block(x, **kwargs)
|
29 |
+
hidden_states += (x,)
|
30 |
+
|
31 |
+
x = self.post_blocks_norm(x)
|
32 |
+
|
33 |
+
return x, hidden_states
|
34 |
+
|
35 |
+
|
36 |
+
class xLSTMModel(xLSTMPreTrainedModel):
|
37 |
+
def __init__(self, config: xLSTMConfig):
|
38 |
+
super().__init__(config)
|
39 |
+
self.config = config
|
40 |
+
|
41 |
+
self.token_embedding = nn.Embedding(
|
42 |
+
num_embeddings=config.vocab_size, embedding_dim=config.embedding_dim
|
43 |
+
)
|
44 |
+
_config = config.to_xlstm_config()
|
45 |
+
|
46 |
+
self.emb_dropout = (
|
47 |
+
nn.Dropout(_config.dropout)
|
48 |
+
if _config.add_embedding_dropout
|
49 |
+
else nn.Identity()
|
50 |
+
)
|
51 |
+
|
52 |
+
self.xlstm_block_stack = xLSTMBlockStack(config=_config)
|
53 |
+
|
54 |
+
|
55 |
+
def forward(
|
56 |
+
self,
|
57 |
+
input_ids: torch.LongTensor,
|
58 |
+
output_hidden_states: Optional[bool] = None,
|
59 |
+
return_dict=Optional[bool],
|
60 |
+
) -> Union[Tuple, BaseModelOutput]:
|
61 |
+
token_embedding = self.token_embedding(input_ids)
|
62 |
+
x = self.emb_dropout(token_embedding)
|
63 |
+
x, hidden_states = self.xlstm_block_stack(x)
|
64 |
+
|
65 |
+
if output_hidden_states:
|
66 |
+
hidden_states = (token_embedding,) + hidden_states
|
67 |
+
|
68 |
+
if not return_dict:
|
69 |
+
return x, hidden_states
|
70 |
+
|
71 |
+
return BaseModelOutput(
|
72 |
+
last_hidden_state=x,
|
73 |
+
hidden_states=hidden_states if output_hidden_states else None,
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
class xLSTMForCausalLM(xLSTMPreTrainedModel, WeightDecayOptimGroupMixin):
|
78 |
+
_tied_weights_keys = ["lm_head.weight"]
|
79 |
+
|
80 |
+
def __init__(self, config: xLSTMConfig, **kwargs):
|
81 |
+
super().__init__(config)
|
82 |
+
self.config = config
|
83 |
+
self.vocab_size = config.vocab_size
|
84 |
+
|
85 |
+
self.model = xLSTMModel(config)
|
86 |
+
|
87 |
+
self.lm_head = nn.Linear(
|
88 |
+
in_features=config.embedding_dim,
|
89 |
+
out_features=config.vocab_size,
|
90 |
+
bias=False,
|
91 |
+
)
|
92 |
+
|
93 |
+
self.post_init()
|
94 |
+
# TODO: Add option for up-projection
|
95 |
+
|
96 |
+
def get_input_embeddings(self):
|
97 |
+
return self.model.token_embedding
|
98 |
+
|
99 |
+
def set_input_embeddings(self, value: nn.Module):
|
100 |
+
self.model.token_embedding = value
|
101 |
+
|
102 |
+
def get_output_embeddings(self):
|
103 |
+
return self.lm_head
|
104 |
+
|
105 |
+
def set_output_embeddings(self, value):
|
106 |
+
self.lm_head = value
|
107 |
+
|
108 |
+
def reset_parameters(self):
|
109 |
+
self.model.xlstm_block_stack.reset_parameters()
|
110 |
+
|
111 |
+
small_init_init_(
|
112 |
+
self.get_input_embeddings().weight, dim=self.config.embedding_dim
|
113 |
+
)
|
114 |
+
|
115 |
+
if not self.config.tie_word_embeddings:
|
116 |
+
small_init_init_(
|
117 |
+
self.get_output_embeddings().weight, dim=self.config.embedding_dim
|
118 |
+
)
|
119 |
+
|
120 |
+
def forward(
|
121 |
+
self,
|
122 |
+
input_ids: torch.Tensor,
|
123 |
+
labels: Optional[torch.LongTensor] = None,
|
124 |
+
output_hidden_states: Optional[bool] = None,
|
125 |
+
return_dict: Optional[bool] = None,
|
126 |
+
):
|
127 |
+
output = self.model(
|
128 |
+
input_ids,
|
129 |
+
output_hidden_states=output_hidden_states,
|
130 |
+
)
|
131 |
+
|
132 |
+
hidden_state = output[0]
|
133 |
+
|
134 |
+
logits = self.lm_head(hidden_state)
|
135 |
+
logits = logits.float()
|
136 |
+
|
137 |
+
loss = None
|
138 |
+
|
139 |
+
if labels is not None:
|
140 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
141 |
+
shift_labels = labels[..., 1:].contiguous()
|
142 |
+
|
143 |
+
loss_fct = nn.CrossEntropyLoss()
|
144 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
145 |
+
shift_labels = shift_labels.view(-1)
|
146 |
+
|
147 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
148 |
+
loss = loss_fct(shift_logits, shift_labels)
|
149 |
+
|
150 |
+
if not return_dict:
|
151 |
+
output = (logits,) + output[1:]
|
152 |
+
return ((loss,) + output) if loss is not None else output
|
153 |
+
|
154 |
+
return CausalLMOutputWithPast(
|
155 |
+
loss=loss,
|
156 |
+
logits=logits,
|
157 |
+
hidden_states=output.hidden_states,
|
158 |
+
)
|
159 |
+
|
160 |
+
def step(
|
161 |
+
self,
|
162 |
+
idx: torch.Tensor,
|
163 |
+
state: dict[str, dict[str, tuple[torch.Tensor, ...]]] = None,
|
164 |
+
**kwargs,
|
165 |
+
) -> tuple[torch.Tensor, dict[str, dict[str, tuple[torch.Tensor, ...]]]]:
|
166 |
+
x = self.token_embedding(idx)
|
167 |
+
x = self.emb_dropout(x)
|
168 |
+
x, state = self.xlstm_block_stack.step(x, state=state, **kwargs)
|
169 |
+
logits = self.lm_head(x)
|
170 |
+
return logits, state
|
171 |
+
|
172 |
+
def _create_weight_decay_optim_groups(
|
173 |
+
self, **kwargs
|
174 |
+
) -> tuple[Sequence[nn.Parameter], Sequence[nn.Parameter]]:
|
175 |
+
weight_decay, no_weight_decay = super()._create_weight_decay_optim_groups(
|
176 |
+
**kwargs
|
177 |
+
)
|
178 |
+
# remove token embedding and add it to the correct group, accrording to the config
|
179 |
+
weight_decay = list(weight_decay)
|
180 |
+
removed = 0
|
181 |
+
for idx in range(len(weight_decay)):
|
182 |
+
if weight_decay[idx - removed] is self.get_input_embeddings().weight:
|
183 |
+
weight_decay.pop(idx - removed)
|
184 |
+
removed += 1
|
185 |
+
weight_decay = tuple(weight_decay)
|
186 |
+
|
187 |
+
# TODO: Fix this
|
188 |
+
# if self.config.weight_decay_on_embedding:
|
189 |
+
if True:
|
190 |
+
weight_decay += (self.get_input_embeddings().weight,)
|
191 |
+
else:
|
192 |
+
no_weight_decay += (self.get_input_embeddings().weight,)
|
193 |
+
|
194 |
+
return weight_decay, no_weight_decay
|
195 |
+
|
196 |
+
def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
|
197 |
+
new_embeddings = nn.Embedding(
|
198 |
+
new_num_tokens, self.token_embedding.embedding_dim
|
199 |
+
)
|
200 |
+
self.token_embedding = new_embeddings.to(self.device)
|
201 |
+
return new_embeddings
|
202 |
+
|
203 |
+
def tie_weights(self):
|
204 |
+
self.get_output_embeddings().weight = self.get_input_embeddings().weight
|
205 |
+
|
206 |
+
def prepare_inputs_for_generation(
|
207 |
+
self,
|
208 |
+
input_ids,
|
209 |
+
**kwargs,
|
210 |
+
):
|
211 |
+
model_inputs = {
|
212 |
+
"input_ids": input_ids.to(self.device),
|
213 |
+
}
|
214 |
+
return model_inputs
|