File size: 1,214 Bytes
419d040 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
language:
- de
- bg
- cs
- da
- el
- en
- es
- et
- fi
- fr
- ga
- hr
- hu
- it
- lt
- lv
- mt
- nl
- pl
- pt
- ro
- sl
- sv
- sk
metrics:
- accuracy
- bleu
pipeline_tag: text-generation
library_name: transformers
base_model: openGPT-X/Teuken-7B-instruct-commercial-v0.4
license: apache-2.0
tags:
- mlx
---
# stelterlab/Teuken-7B-instruct-commercial-v0.4-MLX-4bit
The Model [stelterlab/Teuken-7B-instruct-commercial-v0.4-MLX-4bit](https://huggingface.co/stelterlab/Teuken-7B-instruct-commercial-v0.4-MLX-4bit) was converted to MLX format from [openGPT-X/Teuken-7B-instruct-commercial-v0.4](https://huggingface.co/openGPT-X/Teuken-7B-instruct-commercial-v0.4) using mlx-lm version **0.19.2**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("stelterlab/Teuken-7B-instruct-commercial-v0.4-MLX-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|