rufimelo commited on
Commit
b0277f9
·
1 Parent(s): c0829d4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -34
README.md CHANGED
@@ -1,42 +1,82 @@
1
  ---
2
- pipeline_tag: sentence-similarity
 
 
3
  tags:
4
  - sentence-transformers
5
- - feature-extraction
6
- - sentence-similarity
7
  - transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
 
 
 
 
 
 
 
 
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
 
13
 
14
- <!--- Describe your model here -->
 
15
 
16
- ## Usage (Sentence-Transformers)
17
 
18
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
 
 
 
 
 
 
20
  ```
21
  pip install -U sentence-transformers
22
  ```
23
-
24
  Then you can use the model like this:
25
-
26
  ```python
27
  from sentence_transformers import SentenceTransformer
28
- sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
- model = SentenceTransformer('{MODEL_NAME}')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
34
-
35
-
36
-
37
  ## Usage (HuggingFace Transformers)
38
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
39
-
40
  ```python
41
  from transformers import AutoTokenizer, AutoModel
42
  import torch
@@ -48,13 +88,12 @@ def mean_pooling(model_output, attention_mask):
48
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
49
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
50
 
51
-
52
  # Sentences we want sentence embeddings for
53
  sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
  # Load model from HuggingFace Hub
56
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
57
- model = AutoModel.from_pretrained('{MODEL_NAME}')
58
 
59
  # Tokenize sentences
60
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -62,32 +101,63 @@ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tenso
62
  # Compute token embeddings
63
  with torch.no_grad():
64
  model_output = model(**encoded_input)
65
-
66
  # Perform pooling. In this case, mean pooling.
67
  sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
68
-
69
  print("Sentence embeddings:")
70
  print(sentence_embeddings)
71
  ```
72
 
73
 
74
-
75
- ## Evaluation Results
76
-
77
- <!--- Describe how your model was evaluated -->
78
-
79
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
80
-
81
-
82
-
83
  ## Full Model Architecture
84
  ```
85
  SentenceTransformer(
86
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
87
- (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
88
  )
89
  ```
90
-
91
  ## Citing & Authors
92
 
93
- <!--- Describe where people can find more information -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - pt
4
+ thumbnail: Portuguese BERT for the Legal Domain
5
  tags:
6
  - sentence-transformers
 
 
7
  - transformers
8
+ - bert
9
+ - pytorch
10
+ - sentence-similarity
11
+ license: mit
12
+ pipeline_tag: sentence-similarity
13
+ datasets:
14
+ - stjiris/portuguese-legal-sentences-v0
15
+ - assin
16
+ - assin2
17
+ - stsb_multi_mt
18
+ widget:
19
+ - source_sentence: "O advogado apresentou as provas ao juíz."
20
+ sentences:
21
+ - "O juíz leu as provas."
22
+ - "O juíz leu o recurso."
23
+ - "O juíz atirou uma pedra."
24
+ model-index:
25
+ - name: BERTimbau
26
+ results:
27
+ - task:
28
+ name: STS
29
+ type: STS
30
+ metrics:
31
+ - name: Pearson Correlation - assin Dataset
32
+ type: Pearson Correlation
33
+ value:
34
+ - name: Pearson Correlation - assin2 Dataset
35
+ type: Pearson Correlation
36
+ value:
37
+ - name: Pearson Correlation - stsb_multi_mt pt Dataset
38
+ type: Pearson Correlation
39
+ value:
40
  ---
41
 
 
42
 
43
+ [![INESC-ID](https://www.inesc-id.pt/wp-content/uploads/2019/06/INESC-ID-logo_01.png)](https://www.inesc-id.pt/projects/PR07005/)
44
+
45
+ [![A Semantic Search System for Supremo Tribunal de Justiça](https://rufimelo99.github.io/SemanticSearchSystemForSTJ/_static/logo.png)](https://rufimelo99.github.io/SemanticSearchSystemForSTJ/)
46
+
47
+ Work developed as part of [Project IRIS](https://www.inesc-id.pt/projects/PR07005/).
48
+
49
+ Thesis: [A Semantic Search System for Supremo Tribunal de Justiça](https://rufimelo99.github.io/SemanticSearchSystemForSTJ/)
50
+
51
+ # stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-MetaKD-v1 (Legal BERTimbau)
52
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
53
+ stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-v0 derives from stjiris/bert-large-portuguese-cased-legal-tsdae (legal variant of [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) large).
54
 
55
+ It was trained using the TSDAE technique with a learning rate 1e-5 Legal Sentences from +-30000 documents 212k training steps (best performance for our semantic search system implementation)
56
+ It was presented to Generative Pseudo Labeling training.
57
 
58
+ The model was presented to NLI data. 16 batch size, 2e-5 lr
59
 
60
+ It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin), [assin2](https://huggingface.co/datasets/assin2), [stsb_multi_mt pt](https://huggingface.co/datasets/stsb_multi_mt) datasets. 'lr': 1e-5
61
 
62
+ This model was subjected to Metadata Knowledge Distillation. [Repository](https://github.com/rufimelo99/metadata-knowledge-distillation)
63
+ Trial Technique to improve information retrieval through dense vectors: Metadata Knowledge Distillation
64
+
65
+ ## Usage (Sentence-Transformers)
66
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
67
  ```
68
  pip install -U sentence-transformers
69
  ```
 
70
  Then you can use the model like this:
 
71
  ```python
72
  from sentence_transformers import SentenceTransformer
73
+ sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
74
 
75
+ model = SentenceTransformer('stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-MetaKD-v1')
76
  embeddings = model.encode(sentences)
77
  print(embeddings)
78
  ```
 
 
 
79
  ## Usage (HuggingFace Transformers)
 
 
80
  ```python
81
  from transformers import AutoTokenizer, AutoModel
82
  import torch
 
88
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
89
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
90
 
 
91
  # Sentences we want sentence embeddings for
92
  sentences = ['This is an example sentence', 'Each sentence is converted']
93
 
94
  # Load model from HuggingFace Hub
95
+ tokenizer = AutoTokenizer.from_pretrained('stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-MetaKD-v1')
96
+ model = AutoModel.from_pretrained('stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-MetaKD-v1')
97
 
98
  # Tokenize sentences
99
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
101
  # Compute token embeddings
102
  with torch.no_grad():
103
  model_output = model(**encoded_input)
 
104
  # Perform pooling. In this case, mean pooling.
105
  sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
 
106
  print("Sentence embeddings:")
107
  print(sentence_embeddings)
108
  ```
109
 
110
 
 
 
 
 
 
 
 
 
 
111
  ## Full Model Architecture
112
  ```
113
  SentenceTransformer(
114
+ (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: BertModel
115
+ (1): Pooling({'word_embedding_dimension': 1028, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
116
  )
117
  ```
 
118
  ## Citing & Authors
119
 
120
+ ### Contributions
121
+ [@rufimelo99](https://github.com/rufimelo99)
122
+
123
+ If you use this work, please cite:
124
+
125
+ ```bibtex
126
+ @inproceedings{MeloSemantic,
127
+ author = {Melo, Rui and Santos, Professor Pedro Alexandre and Dias, Professor Jo{\~ a}o},
128
+ title = {A {Semantic} {Search} {System} for {Supremo} {Tribunal} de {Justi}{\c c}a},
129
+ }
130
+
131
+ @inproceedings{souza2020bertimbau,
132
+ author = {F{\'a}bio Souza and
133
+ Rodrigo Nogueira and
134
+ Roberto Lotufo},
135
+ title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
136
+ booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
137
+ year = {2020}
138
+ }
139
+
140
+ @inproceedings{fonseca2016assin,
141
+ title={ASSIN: Avaliacao de similaridade semantica e inferencia textual},
142
+ author={Fonseca, E and Santos, L and Criscuolo, Marcelo and Aluisio, S},
143
+ booktitle={Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal},
144
+ pages={13--15},
145
+ year={2016}
146
+ }
147
+
148
+ @inproceedings{real2020assin,
149
+ title={The assin 2 shared task: a quick overview},
150
+ author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo},
151
+ booktitle={International Conference on Computational Processing of the Portuguese Language},
152
+ pages={406--412},
153
+ year={2020},
154
+ organization={Springer}
155
+ }
156
+ @InProceedings{huggingface:dataset:stsb_multi_mt,
157
+ title = {Machine translated multilingual STS benchmark dataset.},
158
+ author={Philip May},
159
+ year={2021},
160
+ url={https://github.com/PhilipMay/stsb-multi-mt}
161
+ }
162
+
163
+ ```