Update README.md
Browse files
README.md
CHANGED
@@ -1,42 +1,82 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
3 |
tags:
|
4 |
- sentence-transformers
|
5 |
-
- feature-extraction
|
6 |
-
- sentence-similarity
|
7 |
- transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
# {MODEL_NAME}
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
|
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
```
|
21 |
pip install -U sentence-transformers
|
22 |
```
|
23 |
-
|
24 |
Then you can use the model like this:
|
25 |
-
|
26 |
```python
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
-
sentences = ["
|
29 |
|
30 |
-
model = SentenceTransformer('
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
## Usage (HuggingFace Transformers)
|
38 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
39 |
-
|
40 |
```python
|
41 |
from transformers import AutoTokenizer, AutoModel
|
42 |
import torch
|
@@ -48,13 +88,12 @@ def mean_pooling(model_output, attention_mask):
|
|
48 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
49 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
50 |
|
51 |
-
|
52 |
# Sentences we want sentence embeddings for
|
53 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
|
55 |
# Load model from HuggingFace Hub
|
56 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
57 |
-
model = AutoModel.from_pretrained('
|
58 |
|
59 |
# Tokenize sentences
|
60 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -62,32 +101,63 @@ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tenso
|
|
62 |
# Compute token embeddings
|
63 |
with torch.no_grad():
|
64 |
model_output = model(**encoded_input)
|
65 |
-
|
66 |
# Perform pooling. In this case, mean pooling.
|
67 |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
68 |
-
|
69 |
print("Sentence embeddings:")
|
70 |
print(sentence_embeddings)
|
71 |
```
|
72 |
|
73 |
|
74 |
-
|
75 |
-
## Evaluation Results
|
76 |
-
|
77 |
-
<!--- Describe how your model was evaluated -->
|
78 |
-
|
79 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
## Full Model Architecture
|
84 |
```
|
85 |
SentenceTransformer(
|
86 |
-
(0): Transformer({'max_seq_length':
|
87 |
-
(1): Pooling({'word_embedding_dimension':
|
88 |
)
|
89 |
```
|
90 |
-
|
91 |
## Citing & Authors
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- pt
|
4 |
+
thumbnail: Portuguese BERT for the Legal Domain
|
5 |
tags:
|
6 |
- sentence-transformers
|
|
|
|
|
7 |
- transformers
|
8 |
+
- bert
|
9 |
+
- pytorch
|
10 |
+
- sentence-similarity
|
11 |
+
license: mit
|
12 |
+
pipeline_tag: sentence-similarity
|
13 |
+
datasets:
|
14 |
+
- stjiris/portuguese-legal-sentences-v0
|
15 |
+
- assin
|
16 |
+
- assin2
|
17 |
+
- stsb_multi_mt
|
18 |
+
widget:
|
19 |
+
- source_sentence: "O advogado apresentou as provas ao juíz."
|
20 |
+
sentences:
|
21 |
+
- "O juíz leu as provas."
|
22 |
+
- "O juíz leu o recurso."
|
23 |
+
- "O juíz atirou uma pedra."
|
24 |
+
model-index:
|
25 |
+
- name: BERTimbau
|
26 |
+
results:
|
27 |
+
- task:
|
28 |
+
name: STS
|
29 |
+
type: STS
|
30 |
+
metrics:
|
31 |
+
- name: Pearson Correlation - assin Dataset
|
32 |
+
type: Pearson Correlation
|
33 |
+
value:
|
34 |
+
- name: Pearson Correlation - assin2 Dataset
|
35 |
+
type: Pearson Correlation
|
36 |
+
value:
|
37 |
+
- name: Pearson Correlation - stsb_multi_mt pt Dataset
|
38 |
+
type: Pearson Correlation
|
39 |
+
value:
|
40 |
---
|
41 |
|
|
|
42 |
|
43 |
+
[![INESC-ID](https://www.inesc-id.pt/wp-content/uploads/2019/06/INESC-ID-logo_01.png)](https://www.inesc-id.pt/projects/PR07005/)
|
44 |
+
|
45 |
+
[![A Semantic Search System for Supremo Tribunal de Justiça](https://rufimelo99.github.io/SemanticSearchSystemForSTJ/_static/logo.png)](https://rufimelo99.github.io/SemanticSearchSystemForSTJ/)
|
46 |
+
|
47 |
+
Work developed as part of [Project IRIS](https://www.inesc-id.pt/projects/PR07005/).
|
48 |
+
|
49 |
+
Thesis: [A Semantic Search System for Supremo Tribunal de Justiça](https://rufimelo99.github.io/SemanticSearchSystemForSTJ/)
|
50 |
+
|
51 |
+
# stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-MetaKD-v1 (Legal BERTimbau)
|
52 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
53 |
+
stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-v0 derives from stjiris/bert-large-portuguese-cased-legal-tsdae (legal variant of [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) large).
|
54 |
|
55 |
+
It was trained using the TSDAE technique with a learning rate 1e-5 Legal Sentences from +-30000 documents 212k training steps (best performance for our semantic search system implementation)
|
56 |
+
It was presented to Generative Pseudo Labeling training.
|
57 |
|
58 |
+
The model was presented to NLI data. 16 batch size, 2e-5 lr
|
59 |
|
60 |
+
It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin), [assin2](https://huggingface.co/datasets/assin2), [stsb_multi_mt pt](https://huggingface.co/datasets/stsb_multi_mt) datasets. 'lr': 1e-5
|
61 |
|
62 |
+
This model was subjected to Metadata Knowledge Distillation. [Repository](https://github.com/rufimelo99/metadata-knowledge-distillation)
|
63 |
+
Trial Technique to improve information retrieval through dense vectors: Metadata Knowledge Distillation
|
64 |
+
|
65 |
+
## Usage (Sentence-Transformers)
|
66 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
67 |
```
|
68 |
pip install -U sentence-transformers
|
69 |
```
|
|
|
70 |
Then you can use the model like this:
|
|
|
71 |
```python
|
72 |
from sentence_transformers import SentenceTransformer
|
73 |
+
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
|
74 |
|
75 |
+
model = SentenceTransformer('stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-MetaKD-v1')
|
76 |
embeddings = model.encode(sentences)
|
77 |
print(embeddings)
|
78 |
```
|
|
|
|
|
|
|
79 |
## Usage (HuggingFace Transformers)
|
|
|
|
|
80 |
```python
|
81 |
from transformers import AutoTokenizer, AutoModel
|
82 |
import torch
|
|
|
88 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
89 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
90 |
|
|
|
91 |
# Sentences we want sentence embeddings for
|
92 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
93 |
|
94 |
# Load model from HuggingFace Hub
|
95 |
+
tokenizer = AutoTokenizer.from_pretrained('stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-MetaKD-v1')
|
96 |
+
model = AutoModel.from_pretrained('stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-MetaKD-v1')
|
97 |
|
98 |
# Tokenize sentences
|
99 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
101 |
# Compute token embeddings
|
102 |
with torch.no_grad():
|
103 |
model_output = model(**encoded_input)
|
|
|
104 |
# Perform pooling. In this case, mean pooling.
|
105 |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
|
|
106 |
print("Sentence embeddings:")
|
107 |
print(sentence_embeddings)
|
108 |
```
|
109 |
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
## Full Model Architecture
|
112 |
```
|
113 |
SentenceTransformer(
|
114 |
+
(0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: BertModel
|
115 |
+
(1): Pooling({'word_embedding_dimension': 1028, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
116 |
)
|
117 |
```
|
|
|
118 |
## Citing & Authors
|
119 |
|
120 |
+
### Contributions
|
121 |
+
[@rufimelo99](https://github.com/rufimelo99)
|
122 |
+
|
123 |
+
If you use this work, please cite:
|
124 |
+
|
125 |
+
```bibtex
|
126 |
+
@inproceedings{MeloSemantic,
|
127 |
+
author = {Melo, Rui and Santos, Professor Pedro Alexandre and Dias, Professor Jo{\~ a}o},
|
128 |
+
title = {A {Semantic} {Search} {System} for {Supremo} {Tribunal} de {Justi}{\c c}a},
|
129 |
+
}
|
130 |
+
|
131 |
+
@inproceedings{souza2020bertimbau,
|
132 |
+
author = {F{\'a}bio Souza and
|
133 |
+
Rodrigo Nogueira and
|
134 |
+
Roberto Lotufo},
|
135 |
+
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
|
136 |
+
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
|
137 |
+
year = {2020}
|
138 |
+
}
|
139 |
+
|
140 |
+
@inproceedings{fonseca2016assin,
|
141 |
+
title={ASSIN: Avaliacao de similaridade semantica e inferencia textual},
|
142 |
+
author={Fonseca, E and Santos, L and Criscuolo, Marcelo and Aluisio, S},
|
143 |
+
booktitle={Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal},
|
144 |
+
pages={13--15},
|
145 |
+
year={2016}
|
146 |
+
}
|
147 |
+
|
148 |
+
@inproceedings{real2020assin,
|
149 |
+
title={The assin 2 shared task: a quick overview},
|
150 |
+
author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo},
|
151 |
+
booktitle={International Conference on Computational Processing of the Portuguese Language},
|
152 |
+
pages={406--412},
|
153 |
+
year={2020},
|
154 |
+
organization={Springer}
|
155 |
+
}
|
156 |
+
@InProceedings{huggingface:dataset:stsb_multi_mt,
|
157 |
+
title = {Machine translated multilingual STS benchmark dataset.},
|
158 |
+
author={Philip May},
|
159 |
+
year={2021},
|
160 |
+
url={https://github.com/PhilipMay/stsb-multi-mt}
|
161 |
+
}
|
162 |
+
|
163 |
+
```
|