Model save
Browse files
README.md
CHANGED
@@ -20,21 +20,21 @@ model-index:
|
|
20 |
name: cnec
|
21 |
type: cnec
|
22 |
config: default
|
23 |
-
split:
|
24 |
args: default
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -68,26 +68,20 @@ More information needed
|
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
- learning_rate: 2e-05
|
71 |
-
- train_batch_size:
|
72 |
-
- eval_batch_size:
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
-
|
77 |
-
- lr_scheduler_warmup_steps: 500
|
78 |
-
- num_epochs: 16
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
-
| Training Loss | Epoch | Step
|
83 |
-
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.062 | 8.89 | 2000 | 0.1536 | 0.8212 | 0.8928 | 0.8555 | 0.9669 |
|
88 |
-
| 0.0457 | 11.11 | 2500 | 0.1783 | 0.8204 | 0.8673 | 0.8432 | 0.9645 |
|
89 |
-
| 0.0353 | 13.33 | 3000 | 0.1829 | 0.8259 | 0.8809 | 0.8525 | 0.9655 |
|
90 |
-
| 0.0289 | 15.56 | 3500 | 0.1865 | 0.8283 | 0.8837 | 0.8551 | 0.9664 |
|
91 |
|
92 |
|
93 |
### Framework versions
|
|
|
20 |
name: cnec
|
21 |
type: cnec
|
22 |
config: default
|
23 |
+
split: validation
|
24 |
args: default
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8366164542294322
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8946716232961586
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8646706586826347
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9697812545270172
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1777
|
48 |
+
- Precision: 0.8366
|
49 |
+
- Recall: 0.8947
|
50 |
+
- F1: 0.8647
|
51 |
+
- Accuracy: 0.9698
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 1
|
72 |
+
- eval_batch_size: 1
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 3
|
|
|
|
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.1989 | 1.0 | 7193 | 0.1998 | 0.7372 | 0.8249 | 0.7786 | 0.9575 |
|
83 |
+
| 0.1398 | 2.0 | 14386 | 0.1890 | 0.8257 | 0.8827 | 0.8533 | 0.9662 |
|
84 |
+
| 0.0926 | 3.0 | 21579 | 0.1777 | 0.8366 | 0.8947 | 0.8647 | 0.9698 |
|
|
|
|
|
|
|
|
|
85 |
|
86 |
|
87 |
### Framework versions
|