stulcrad commited on
Commit
035d5ef
·
verified ·
1 Parent(s): 95aa246

Model save

Browse files
Files changed (1) hide show
  1. README.md +18 -24
README.md CHANGED
@@ -20,21 +20,21 @@ model-index:
20
  name: cnec
21
  type: cnec
22
  config: default
23
- split: test
24
  args: default
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8282633808240277
29
  - name: Recall
30
  type: recall
31
- value: 0.8837304847986853
32
  - name: F1
33
  type: f1
34
- value: 0.8550983899821109
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9664021317268146
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1865
48
- - Precision: 0.8283
49
- - Recall: 0.8837
50
- - F1: 0.8551
51
- - Accuracy: 0.9664
52
 
53
  ## Model description
54
 
@@ -68,26 +68,20 @@ More information needed
68
 
69
  The following hyperparameters were used during training:
70
  - learning_rate: 2e-05
71
- - train_batch_size: 32
72
- - eval_batch_size: 32
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
- - lr_scheduler_warmup_ratio: 0.1
77
- - lr_scheduler_warmup_steps: 500
78
- - num_epochs: 16
79
 
80
  ### Training results
81
 
82
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
- | 0.6852 | 2.22 | 500 | 0.1614 | 0.7278 | 0.8250 | 0.7733 | 0.9574 |
85
- | 0.1311 | 4.44 | 1000 | 0.1716 | 0.7690 | 0.8591 | 0.8116 | 0.9596 |
86
- | 0.0882 | 6.67 | 1500 | 0.1785 | 0.7616 | 0.8714 | 0.8128 | 0.9613 |
87
- | 0.062 | 8.89 | 2000 | 0.1536 | 0.8212 | 0.8928 | 0.8555 | 0.9669 |
88
- | 0.0457 | 11.11 | 2500 | 0.1783 | 0.8204 | 0.8673 | 0.8432 | 0.9645 |
89
- | 0.0353 | 13.33 | 3000 | 0.1829 | 0.8259 | 0.8809 | 0.8525 | 0.9655 |
90
- | 0.0289 | 15.56 | 3500 | 0.1865 | 0.8283 | 0.8837 | 0.8551 | 0.9664 |
91
 
92
 
93
  ### Framework versions
 
20
  name: cnec
21
  type: cnec
22
  config: default
23
+ split: validation
24
  args: default
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8366164542294322
29
  - name: Recall
30
  type: recall
31
+ value: 0.8946716232961586
32
  - name: F1
33
  type: f1
34
+ value: 0.8646706586826347
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9697812545270172
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.1777
48
+ - Precision: 0.8366
49
+ - Recall: 0.8947
50
+ - F1: 0.8647
51
+ - Accuracy: 0.9698
52
 
53
  ## Model description
54
 
 
68
 
69
  The following hyperparameters were used during training:
70
  - learning_rate: 2e-05
71
+ - train_batch_size: 1
72
+ - eval_batch_size: 1
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
+ - num_epochs: 3
 
 
77
 
78
  ### Training results
79
 
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.1989 | 1.0 | 7193 | 0.1998 | 0.7372 | 0.8249 | 0.7786 | 0.9575 |
83
+ | 0.1398 | 2.0 | 14386 | 0.1890 | 0.8257 | 0.8827 | 0.8533 | 0.9662 |
84
+ | 0.0926 | 3.0 | 21579 | 0.1777 | 0.8366 | 0.8947 | 0.8647 | 0.9698 |
 
 
 
 
85
 
86
 
87
  ### Framework versions