Model save
Browse files- README.md +18 -18
- model.safetensors +1 -1
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,15 +79,15 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
|
92 |
|
93 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8330275229357799
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8764478764478765
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8541862652869239
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9688830943068231
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.2032
|
48 |
+
- Precision: 0.8330
|
49 |
+
- Recall: 0.8764
|
50 |
+
- F1: 0.8542
|
51 |
+
- Accuracy: 0.9689
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.2421 | 1.11 | 500 | 0.1391 | 0.7211 | 0.8137 | 0.7646 | 0.9611 |
|
83 |
+
| 0.1055 | 2.22 | 1000 | 0.1429 | 0.7616 | 0.8605 | 0.8081 | 0.9633 |
|
84 |
+
| 0.0646 | 3.33 | 1500 | 0.1528 | 0.8 | 0.8629 | 0.8303 | 0.9665 |
|
85 |
+
| 0.0407 | 4.44 | 2000 | 0.1464 | 0.8097 | 0.8605 | 0.8343 | 0.9681 |
|
86 |
+
| 0.0291 | 5.56 | 2500 | 0.1630 | 0.8171 | 0.8600 | 0.8380 | 0.9666 |
|
87 |
+
| 0.015 | 6.67 | 3000 | 0.1808 | 0.8290 | 0.8678 | 0.8479 | 0.9680 |
|
88 |
+
| 0.009 | 7.78 | 3500 | 0.1919 | 0.8307 | 0.8740 | 0.8518 | 0.9689 |
|
89 |
+
| 0.0055 | 8.89 | 4000 | 0.1982 | 0.8375 | 0.8808 | 0.8586 | 0.9689 |
|
90 |
+
| 0.0034 | 10.0 | 4500 | 0.2032 | 0.8330 | 0.8764 | 0.8542 | 0.9689 |
|
91 |
|
92 |
|
93 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2235481556
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a77ba72b2a1aee14b474d6ecb4119aaa7c6808b43a2c51813d8053192b9d0a93
|
3 |
size 2235481556
|