stulcrad commited on
Commit
6325e8b
·
verified ·
1 Parent(s): e129e6d

Model save

Browse files
Files changed (2) hide show
  1. README.md +27 -22
  2. model.safetensors +1 -1
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8675762439807384
29
  - name: Recall
30
  type: recall
31
- value: 0.8930194134655102
32
  - name: F1
33
  type: f1
34
- value: 0.880113983309587
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9709981167608286
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1744
48
- - Precision: 0.8676
49
- - Recall: 0.8930
50
- - F1: 0.8801
51
- - Accuracy: 0.9710
52
 
53
  ## Model description
54
 
@@ -73,22 +73,27 @@ The following hyperparameters were used during training:
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
- - num_epochs: 10
77
 
78
  ### Training results
79
 
80
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.4736 | 1.0 | 900 | 0.1585 | 0.7678 | 0.8319 | 0.7986 | 0.9597 |
83
- | 0.1665 | 2.0 | 1800 | 0.1418 | 0.8237 | 0.8550 | 0.8391 | 0.9650 |
84
- | 0.129 | 3.0 | 2700 | 0.1361 | 0.8299 | 0.8686 | 0.8488 | 0.9682 |
85
- | 0.0998 | 4.0 | 3600 | 0.1322 | 0.8474 | 0.8852 | 0.8659 | 0.9698 |
86
- | 0.0867 | 5.0 | 4500 | 0.1479 | 0.8419 | 0.8823 | 0.8616 | 0.9704 |
87
- | 0.0709 | 6.0 | 5400 | 0.1418 | 0.8539 | 0.8815 | 0.8675 | 0.9708 |
88
- | 0.0635 | 7.0 | 6300 | 0.1579 | 0.8626 | 0.8819 | 0.8721 | 0.9704 |
89
- | 0.0512 | 8.0 | 7200 | 0.1624 | 0.8649 | 0.8910 | 0.8777 | 0.9704 |
90
- | 0.0444 | 9.0 | 8100 | 0.1670 | 0.8702 | 0.8914 | 0.8806 | 0.9712 |
91
- | 0.0399 | 10.0 | 9000 | 0.1744 | 0.8676 | 0.8930 | 0.8801 | 0.9710 |
 
 
 
 
 
92
 
93
 
94
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8564668769716088
29
  - name: Recall
30
  type: recall
31
+ value: 0.8971499380421314
32
  - name: F1
33
  type: f1
34
+ value: 0.876336493847085
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9708532522091844
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.2155
48
+ - Precision: 0.8565
49
+ - Recall: 0.8971
50
+ - F1: 0.8763
51
+ - Accuracy: 0.9709
52
 
53
  ## Model description
54
 
 
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
+ - num_epochs: 15
77
 
78
  ### Training results
79
 
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.4393 | 1.0 | 900 | 0.1671 | 0.7756 | 0.8195 | 0.7969 | 0.9590 |
83
+ | 0.1716 | 2.0 | 1800 | 0.1409 | 0.8155 | 0.8583 | 0.8364 | 0.9662 |
84
+ | 0.1326 | 3.0 | 2700 | 0.1288 | 0.8203 | 0.8748 | 0.8467 | 0.9687 |
85
+ | 0.1027 | 4.0 | 3600 | 0.1408 | 0.8290 | 0.8732 | 0.8505 | 0.9683 |
86
+ | 0.0891 | 5.0 | 4500 | 0.1447 | 0.8485 | 0.9000 | 0.8735 | 0.9725 |
87
+ | 0.0715 | 6.0 | 5400 | 0.1393 | 0.8561 | 0.8868 | 0.8712 | 0.9713 |
88
+ | 0.0644 | 7.0 | 6300 | 0.1586 | 0.8517 | 0.8918 | 0.8713 | 0.9702 |
89
+ | 0.0535 | 8.0 | 7200 | 0.1526 | 0.8481 | 0.8810 | 0.8643 | 0.9696 |
90
+ | 0.0492 | 9.0 | 8100 | 0.1795 | 0.8529 | 0.8984 | 0.8751 | 0.9702 |
91
+ | 0.0391 | 10.0 | 9000 | 0.1903 | 0.8536 | 0.8938 | 0.8733 | 0.9693 |
92
+ | 0.0323 | 11.0 | 9900 | 0.1885 | 0.8615 | 0.9046 | 0.8825 | 0.9724 |
93
+ | 0.0274 | 12.0 | 10800 | 0.2099 | 0.8585 | 0.9025 | 0.8800 | 0.9696 |
94
+ | 0.0237 | 13.0 | 11700 | 0.1944 | 0.8624 | 0.9009 | 0.8812 | 0.9720 |
95
+ | 0.0245 | 14.0 | 12600 | 0.2129 | 0.8618 | 0.8967 | 0.8789 | 0.9711 |
96
+ | 0.0206 | 15.0 | 13500 | 0.2155 | 0.8565 | 0.8971 | 0.8763 | 0.9709 |
97
 
98
 
99
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:deba28c032474068ca0f735fdd5390bbb3db261c09146eb7a57ca12abdcfd8ac
3
  size 2235481556
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:264dfaf5e8a978ff83bc221cacfc5811667d68b3c8c8e61499224c6ca895957c
3
  size 2235481556