stulcrad commited on
Commit
9c8d61e
·
verified ·
1 Parent(s): 8c130dd

Model save

Browse files
Files changed (2) hide show
  1. README.md +23 -32
  2. model.safetensors +1 -1
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- license: mit
3
- base_model: FacebookAI/xlm-roberta-large
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8311333636777424
29
  - name: Recall
30
  type: recall
31
- value: 0.8812741312741312
32
  - name: F1
33
  type: f1
34
- value: 0.8554696650269384
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9682167173692597
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -42,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
42
 
43
  # CNEC2_0_Supertypes_xlm-roberta-large
44
 
45
- This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1827
48
- - Precision: 0.8311
49
- - Recall: 0.8813
50
- - F1: 0.8555
51
- - Accuracy: 0.9682
52
 
53
  ## Model description
54
 
@@ -68,8 +68,8 @@ More information needed
68
 
69
  The following hyperparameters were used during training:
70
  - learning_rate: 2e-05
71
- - train_batch_size: 8
72
- - eval_batch_size: 8
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
@@ -81,24 +81,15 @@ The following hyperparameters were used during training:
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
- | 1.0633 | 0.56 | 500 | 0.2514 | 0.4967 | 0.6544 | 0.5648 | 0.9322 |
85
- | 0.2454 | 1.11 | 1000 | 0.2044 | 0.6504 | 0.7901 | 0.7134 | 0.9532 |
86
- | 0.2064 | 1.67 | 1500 | 0.1721 | 0.7254 | 0.7828 | 0.7530 | 0.9562 |
87
- | 0.1698 | 2.22 | 2000 | 0.1755 | 0.7472 | 0.8388 | 0.7904 | 0.9604 |
88
- | 0.1472 | 2.78 | 2500 | 0.1478 | 0.7547 | 0.8417 | 0.7958 | 0.9624 |
89
- | 0.1244 | 3.33 | 3000 | 0.1516 | 0.7934 | 0.8412 | 0.8166 | 0.9638 |
90
- | 0.12 | 3.89 | 3500 | 0.1366 | 0.7851 | 0.8692 | 0.8250 | 0.9665 |
91
- | 0.0946 | 4.44 | 4000 | 0.1678 | 0.7815 | 0.8494 | 0.8141 | 0.9652 |
92
- | 0.1024 | 5.0 | 4500 | 0.1389 | 0.7756 | 0.8509 | 0.8115 | 0.9649 |
93
- | 0.0765 | 5.56 | 5000 | 0.1563 | 0.7824 | 0.8571 | 0.8181 | 0.9663 |
94
- | 0.0802 | 6.11 | 5500 | 0.1677 | 0.8024 | 0.8586 | 0.8296 | 0.9646 |
95
- | 0.0612 | 6.67 | 6000 | 0.1723 | 0.8068 | 0.8769 | 0.8404 | 0.9662 |
96
- | 0.0529 | 7.22 | 6500 | 0.1698 | 0.8230 | 0.8774 | 0.8493 | 0.9686 |
97
- | 0.0476 | 7.78 | 7000 | 0.1648 | 0.8271 | 0.8702 | 0.8481 | 0.9689 |
98
- | 0.0487 | 8.33 | 7500 | 0.1721 | 0.8287 | 0.8707 | 0.8491 | 0.9683 |
99
- | 0.0392 | 8.89 | 8000 | 0.1787 | 0.8222 | 0.8769 | 0.8487 | 0.9681 |
100
- | 0.0361 | 9.44 | 8500 | 0.1803 | 0.8392 | 0.8818 | 0.8600 | 0.9682 |
101
- | 0.034 | 10.0 | 9000 | 0.1827 | 0.8311 | 0.8813 | 0.8555 | 0.9682 |
102
 
103
 
104
  ### Framework versions
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: distilbert/distilbert-base-multilingual-cased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.7557829181494662
29
  - name: Recall
30
  type: recall
31
+ value: 0.819980694980695
32
  - name: F1
33
  type: f1
34
+ value: 0.7865740740740742
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9568269568269568
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
 
43
  # CNEC2_0_Supertypes_xlm-roberta-large
44
 
45
+ This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.2049
48
+ - Precision: 0.7558
49
+ - Recall: 0.8200
50
+ - F1: 0.7866
51
+ - Accuracy: 0.9568
52
 
53
  ## Model description
54
 
 
68
 
69
  The following hyperparameters were used during training:
70
  - learning_rate: 2e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
 
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
+ | 0.7025 | 1.11 | 500 | 0.2950 | 0.5066 | 0.5927 | 0.5463 | 0.9128 |
85
+ | 0.2152 | 2.22 | 1000 | 0.2057 | 0.6733 | 0.7539 | 0.7113 | 0.9425 |
86
+ | 0.1366 | 3.33 | 1500 | 0.1680 | 0.7228 | 0.7891 | 0.7545 | 0.9525 |
87
+ | 0.0849 | 4.44 | 2000 | 0.1710 | 0.7246 | 0.7987 | 0.7599 | 0.9540 |
88
+ | 0.0574 | 5.56 | 2500 | 0.1725 | 0.7309 | 0.8166 | 0.7714 | 0.9558 |
89
+ | 0.0384 | 6.67 | 3000 | 0.1855 | 0.7327 | 0.8243 | 0.7758 | 0.9554 |
90
+ | 0.0292 | 7.78 | 3500 | 0.1944 | 0.7557 | 0.8287 | 0.7905 | 0.9573 |
91
+ | 0.0208 | 8.89 | 4000 | 0.2053 | 0.7486 | 0.8118 | 0.7789 | 0.9555 |
92
+ | 0.0164 | 10.0 | 4500 | 0.2049 | 0.7558 | 0.8200 | 0.7866 | 0.9568 |
 
 
 
 
 
 
 
 
 
93
 
94
 
95
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fb9d0bd13620e1a0b51c1f04a2b889920ae56233ca1e77286f9779c424a0bfb0
3
  size 539000964
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c389306385c99d35daa04ff120cd7f18d25126cbc301f4c67cc4fa17815b5019
3
  size 539000964