stummala521 commited on
Commit
842c324
·
verified ·
1 Parent(s): 9da3f90

Uploading RandomForestClassifier model and evaluation data.

Browse files
Files changed (4) hide show
  1. README.md +207 -3
  2. config.json +22 -0
  3. confusion_matrix.png +0 -0
  4. model.pkl +3 -0
README.md CHANGED
@@ -1,3 +1,207 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ tags:
4
+ - sklearn
5
+ - skops
6
+ - tabular-classification
7
+ model_format: pickle
8
+ model_file: model.pkl
9
+ widget:
10
+ - structuredData:
11
+ found_in_search_area:
12
+ - true
13
+ - true
14
+ - false
15
+ ---
16
+
17
+ # Model description
18
+
19
+ [More Information Needed]
20
+
21
+ ## Intended uses & limitations
22
+
23
+ [More Information Needed]
24
+
25
+ ## Training Procedure
26
+
27
+ [More Information Needed]
28
+
29
+ ### Hyperparameters
30
+
31
+ <details>
32
+ <summary> Click to expand </summary>
33
+
34
+ | Hyperparameter | Value |
35
+ |---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
36
+ | memory | |
37
+ | steps | [('columntransformer', ColumnTransformer(transformers=[('standardscaler', StandardScaler(),<br /> ['location_found_elevation']),<br /> ('onehotencoder', OneHotEncoder(),<br /> ['situation'])])), ('randomforestclassifier', RandomForestClassifier(class_weight={np.False_: np.float64(1.9217032967032968),<br /> np.True_: np.float64(0.6758454106280193)},<br /> random_state=42))] |
38
+ | transform_input | |
39
+ | verbose | False |
40
+ | columntransformer | ColumnTransformer(transformers=[('standardscaler', StandardScaler(),<br /> ['location_found_elevation']),<br /> ('onehotencoder', OneHotEncoder(),<br /> ['situation'])]) |
41
+ | randomforestclassifier | RandomForestClassifier(class_weight={np.False_: np.float64(1.9217032967032968),<br /> np.True_: np.float64(0.6758454106280193)},<br /> random_state=42) |
42
+ | columntransformer__force_int_remainder_cols | True |
43
+ | columntransformer__n_jobs | |
44
+ | columntransformer__remainder | drop |
45
+ | columntransformer__sparse_threshold | 0.3 |
46
+ | columntransformer__transformer_weights | |
47
+ | columntransformer__transformers | [('standardscaler', StandardScaler(), ['location_found_elevation']), ('onehotencoder', OneHotEncoder(), ['situation'])] |
48
+ | columntransformer__verbose | False |
49
+ | columntransformer__verbose_feature_names_out | True |
50
+ | columntransformer__standardscaler | StandardScaler() |
51
+ | columntransformer__onehotencoder | OneHotEncoder() |
52
+ | columntransformer__standardscaler__copy | True |
53
+ | columntransformer__standardscaler__with_mean | True |
54
+ | columntransformer__standardscaler__with_std | True |
55
+ | columntransformer__onehotencoder__categories | auto |
56
+ | columntransformer__onehotencoder__drop | |
57
+ | columntransformer__onehotencoder__dtype | <class 'numpy.float64'> |
58
+ | columntransformer__onehotencoder__feature_name_combiner | concat |
59
+ | columntransformer__onehotencoder__handle_unknown | error |
60
+ | columntransformer__onehotencoder__max_categories | |
61
+ | columntransformer__onehotencoder__min_frequency | |
62
+ | columntransformer__onehotencoder__sparse_output | True |
63
+ | randomforestclassifier__bootstrap | True |
64
+ | randomforestclassifier__ccp_alpha | 0.0 |
65
+ | randomforestclassifier__class_weight | {np.False_: np.float64(1.9217032967032968), np.True_: np.float64(0.6758454106280193)} |
66
+ | randomforestclassifier__criterion | gini |
67
+ | randomforestclassifier__max_depth | |
68
+ | randomforestclassifier__max_features | sqrt |
69
+ | randomforestclassifier__max_leaf_nodes | |
70
+ | randomforestclassifier__max_samples | |
71
+ | randomforestclassifier__min_impurity_decrease | 0.0 |
72
+ | randomforestclassifier__min_samples_leaf | 1 |
73
+ | randomforestclassifier__min_samples_split | 2 |
74
+ | randomforestclassifier__min_weight_fraction_leaf | 0.0 |
75
+ | randomforestclassifier__monotonic_cst | |
76
+ | randomforestclassifier__n_estimators | 100 |
77
+ | randomforestclassifier__n_jobs | |
78
+ | randomforestclassifier__oob_score | False |
79
+ | randomforestclassifier__random_state | 42 |
80
+ | randomforestclassifier__verbose | 0 |
81
+ | randomforestclassifier__warm_start | False |
82
+
83
+ </details>
84
+
85
+ ### Model Plot
86
+
87
+ <style>#sk-container-id-1 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: #000;--sklearn-color-text-muted: #666;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
88
+ }#sk-container-id-1 {color: var(--sklearn-color-text);
89
+ }#sk-container-id-1 pre {padding: 0;
90
+ }#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
91
+ }#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
92
+ }#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
93
+ }#sk-container-id-1 div.sk-text-repr-fallback {display: none;
94
+ }div.sk-parallel-item,
95
+ div.sk-serial,
96
+ div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
97
+ }/* Parallel-specific style estimator block */#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
98
+ }#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
99
+ }#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;
100
+ }#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
101
+ }#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
102
+ }#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;
103
+ }/* Serial-specific style estimator block */#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
104
+ }/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
105
+ clickable and can be expanded/collapsed.
106
+ - Pipeline and ColumnTransformer use this feature and define the default style
107
+ - Estimators will overwrite some part of the style using the `sk-estimator` class
108
+ *//* Pipeline and ColumnTransformer style (default) */#sk-container-id-1 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
109
+ }/* Toggleable label */
110
+ #sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: flex;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;align-items: start;justify-content: space-between;gap: 0.5em;
111
+ }#sk-container-id-1 label.sk-toggleable__label .caption {font-size: 0.6rem;font-weight: lighter;color: var(--sklearn-color-text-muted);
112
+ }#sk-container-id-1 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
113
+ }#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
114
+ }/* Toggleable content - dropdown */#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
115
+ }#sk-container-id-1 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
116
+ }#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
117
+ }#sk-container-id-1 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
118
+ }#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
119
+ }#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
120
+ }/* Pipeline/ColumnTransformer-specific style */#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
121
+ }#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
122
+ }/* Estimator-specific style *//* Colorize estimator box */
123
+ #sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
124
+ }#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
125
+ }#sk-container-id-1 div.sk-label label.sk-toggleable__label,
126
+ #sk-container-id-1 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
127
+ }/* On hover, darken the color of the background */
128
+ #sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
129
+ }/* Label box, darken color on hover, fitted */
130
+ #sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
131
+ }/* Estimator label */#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
132
+ }#sk-container-id-1 div.sk-label-container {text-align: center;
133
+ }/* Estimator-specific */
134
+ #sk-container-id-1 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
135
+ }#sk-container-id-1 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
136
+ }/* on hover */
137
+ #sk-container-id-1 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
138
+ }#sk-container-id-1 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
139
+ }/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
140
+ a:link.sk-estimator-doc-link,
141
+ a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 0.5em;text-align: center;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
142
+ }.sk-estimator-doc-link.fitted,
143
+ a:link.sk-estimator-doc-link.fitted,
144
+ a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
145
+ }/* On hover */
146
+ div.sk-estimator:hover .sk-estimator-doc-link:hover,
147
+ .sk-estimator-doc-link:hover,
148
+ div.sk-label-container:hover .sk-estimator-doc-link:hover,
149
+ .sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
150
+ }div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
151
+ .sk-estimator-doc-link.fitted:hover,
152
+ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
153
+ .sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
154
+ }/* Span, style for the box shown on hovering the info icon */
155
+ .sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
156
+ }.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
157
+ }.sk-estimator-doc-link:hover span {display: block;
158
+ }/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-1 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
159
+ }#sk-container-id-1 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
160
+ }/* On hover */
161
+ #sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
162
+ }#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
163
+ }
164
+ </style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(transformers=[(&#x27;standardscaler&#x27;,StandardScaler(),[&#x27;location_found_elevation&#x27;]),(&#x27;onehotencoder&#x27;,OneHotEncoder(),[&#x27;situation&#x27;])])),(&#x27;randomforestclassifier&#x27;,RandomForestClassifier(class_weight={np.False_: np.float64(1.9217032967032968),np.True_: np.float64(0.6758454106280193)},random_state=42))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>Pipeline</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></div></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(transformers=[(&#x27;standardscaler&#x27;,StandardScaler(),[&#x27;location_found_elevation&#x27;]),(&#x27;onehotencoder&#x27;,OneHotEncoder(),[&#x27;situation&#x27;])])),(&#x27;randomforestclassifier&#x27;,RandomForestClassifier(class_weight={np.False_: np.float64(1.9217032967032968),np.True_: np.float64(0.6758454106280193)},random_state=42))])</pre></div> </div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>columntransformer: ColumnTransformer</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.compose.ColumnTransformer.html">?<span>Documentation for columntransformer: ColumnTransformer</span></a></div></label><div class="sk-toggleable__content fitted"><pre>ColumnTransformer(transformers=[(&#x27;standardscaler&#x27;, StandardScaler(),[&#x27;location_found_elevation&#x27;]),(&#x27;onehotencoder&#x27;, OneHotEncoder(),[&#x27;situation&#x27;])])</pre></div> </div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>standardscaler</div></div></label><div class="sk-toggleable__content fitted"><pre>[&#x27;location_found_elevation&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>StandardScaler</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.preprocessing.StandardScaler.html">?<span>Documentation for StandardScaler</span></a></div></label><div class="sk-toggleable__content fitted"><pre>StandardScaler()</pre></div> </div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>onehotencoder</div></div></label><div class="sk-toggleable__content fitted"><pre>[&#x27;situation&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-6" type="checkbox" ><label for="sk-estimator-id-6" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>OneHotEncoder</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.preprocessing.OneHotEncoder.html">?<span>Documentation for OneHotEncoder</span></a></div></label><div class="sk-toggleable__content fitted"><pre>OneHotEncoder()</pre></div> </div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-7" type="checkbox" ><label for="sk-estimator-id-7" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>RandomForestClassifier</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.ensemble.RandomForestClassifier.html">?<span>Documentation for RandomForestClassifier</span></a></div></label><div class="sk-toggleable__content fitted"><pre>RandomForestClassifier(class_weight={np.False_: np.float64(1.9217032967032968),np.True_: np.float64(0.6758454106280193)},random_state=42)</pre></div> </div></div></div></div></div></div>
165
+
166
+ ## Evaluation Results
167
+
168
+ | Metric | Value |
169
+ |----------|----------|
170
+ | accuracy | 0.698333 |
171
+ | f1_score | 0.698018 |
172
+
173
+ # How to Get Started with the Model
174
+
175
+ [More Information Needed]
176
+
177
+ # Model Card Authors
178
+
179
+ This model card is written by following authors:
180
+
181
+ [More Information Needed]
182
+
183
+ # Model Card Contact
184
+
185
+ You can contact the model card authors through following channels:
186
+ [More Information Needed]
187
+
188
+ # Citation
189
+
190
+ Below you can find information related to citation.
191
+
192
+ **BibTeX:**
193
+ ```
194
+ [More Information Needed]
195
+ ```
196
+
197
+ # model_description
198
+
199
+ RandomForestClassifier model for tabular classification.
200
+
201
+ # eval_method
202
+
203
+ Evaluated using test split.
204
+
205
+ # confusion_matrix
206
+
207
+ ![confusion_matrix](AI4SAR-model/confusion_matrix.png)
config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "found_in_search_area"
5
+ ],
6
+ "environment": [
7
+ "scikit-learn"
8
+ ],
9
+ "example_input": {
10
+ "found_in_search_area": [
11
+ true,
12
+ true,
13
+ false
14
+ ]
15
+ },
16
+ "model": {
17
+ "file": "model.pkl"
18
+ },
19
+ "model_format": "pickle",
20
+ "task": "tabular-classification"
21
+ }
22
+ }
confusion_matrix.png ADDED
model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66a45848d4cb3d444ed1a8e007040f8783216464926053b391c1bbeef2907c29
3
+ size 5235357