GGUF
Inference Endpoints
samos123 commited on
Commit
0241125
·
1 Parent(s): b938612

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - weaviate/WeaviateGraphQLGorilla-RandomSplit-Train
4
+ ---
5
+ ## Dataset
6
+ Finetuned on: https://huggingface.co/datasets/weaviate/WeaviateGraphQLGorilla-RandomSplit-Train
7
+
8
+ ## Prompt template
9
+ ```
10
+ ## Instruction
11
+ Your task is to write GraphQL for the Natural Language Query provided. Use the provided API reference and Schema to generate the GraphQL. The GraphQL should be valid for Weaviate.
12
+
13
+ Only use the API reference to understand the syntax of the request.
14
+
15
+ ## Natural Language Query
16
+ {nlcommand}
17
+
18
+ ## Schema
19
+ {schema}
20
+
21
+ ## API reference
22
+ {apiRef}
23
+
24
+ ## Answer
25
+ {output}
26
+ ```
27
+
28
+ ## Example usage
29
+ ```python
30
+ from transformers import AutoTokenizer, AutoModelForCausalLM
31
+ import torch
32
+
33
+ model_id = "substratusai/weaviate-gorilla-v4-random-split"
34
+
35
+ model = AutoModelForCausalLM.from_pretrained(
36
+ model_id,
37
+ load_in_4bit=True,
38
+ device_map='auto',
39
+ )
40
+
41
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
42
+
43
+ text = """
44
+ ## Instruction
45
+ Your task is to write GraphQL for the Natural Language Query provided. Use the provided API reference and Schema to generate the GraphQL. The GraphQL should be valid for Weaviate.
46
+
47
+ Only use the API reference to understand the syntax of the request.
48
+
49
+ ## Natural Language Query
50
+ ```text Get me the top 10 historical events related to 'World War II', and show the event name, description, year, significant impact, and the names and populations of the involved countries. ```
51
+
52
+ ## Schema
53
+ { "classes": [ { "class": "HistoricalEvent", "description": "Information about historical events", "vectorIndexType": "hnsw", "vectorizer": "text2vec-transformers", "properties": [ { "name": "eventName", "dataType": ["text"], "description": "Name of the historical event" }, { "name": "description", "dataType": ["text"], "description": "Detailed description of the event" }, { "name": "year", "dataType": ["int"], "description": "Year the event occurred" }, { "name": "hadSignificantImpact", "dataType": ["boolean"], "description": "Whether the event had a significant impact" }, { "name": "involvedCountries", "dataType": ["Country"], "description": "Countries involved in the event" }{ "class": "Country", "description": "Information about countries", "vectorIndexType": "hnsw", "vectorizer": "text2vec-transformers", "properties": [ { "name": "countryName", "dataType": ["text"], "description": "Name of the country" }, { "name": "population", "dataType": ["int"], "description": "Population of the country" }}}
54
+
55
+ ## API reference
56
+ 1. Limit BM25 search results Limit the results[] You can limit the number of results returned by a `bm25` search, - to a fixed number, using the `limit: <N>` operator - to the first N "drops" in `score`, using the `autocut` operator `autocut` can be combined with `limit: N`, which would limit autocut's input to the first `N` objects. Limiting the number of results Use the `limit` argument to specify the maximum number of results that should be returned: ```graphql { Get { JeopardyQuestion( bm25: { query: "safety" }, limit: 3 ) { question answer _additional { score } } } } ```
57
+
58
+ ## Answer
59
+ ```graphql
60
+ """
61
+ device = "cuda:0"
62
+
63
+ inputs = tokenizer(text, return_tensors="pt").to(device)
64
+ # this was needed due to a issue with model not taking token_type_ids
65
+ # inputs.pop("token_type_ids")
66
+ outputs = model.generate(**inputs, max_new_tokens=300)
67
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
68
+ ```