File size: 1,213 Bytes
73ef205
eab5dce
73ef205
5031ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0182d2
5031ea5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
---
license: cc-by-nc-4.0
---

Recommended version of `diffusers` is `0.20.2` or `0.24.0` with `torch` `2`.

Usage Example:
```python
import copy
import torch
import requests
from PIL import Image
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, ControlNetModel

# Load the pipeline
pipeline: DiffusionPipeline = DiffusionPipeline.from_pretrained(
    "sudo-ai/zero123plus-v1.2", custom_pipeline="sudo-ai/zero123plus-pipeline",
    torch_dtype=torch.float16
)
normal_pipeline = copy.copy(pipeline)
normal_pipeline.add_controlnet(ControlNetModel.from_pretrained(
    "sudo-ai/controlnet-zp12-normal-gen-v1", torch_dtype=torch.float16
), conditioning_scale=1.0)
pipeline.to("cuda:0", torch.float16)
normal_pipeline.to("cuda:0", torch.float16)
# Run the pipeline
cond = Image.open(requests.get("https://d.skis.ltd/nrp/sample-data/0_cond.png", stream=True).raw)
genimg = pipeline(
    cond,
    prompt='', guidance_scale=4, num_inference_steps=75, width=640, height=960
).images[0]
normalimg = normal_pipeline(
    cond, depth_image=genimg,
    prompt='', guidance_scale=1, num_inference_steps=50, width=640, height=960
).images[0]
genimg.save("colors.png")
normalimg.save("normals.png")
```