Rubyando59 commited on
Commit
a594e9a
·
verified ·
1 Parent(s): a87fe54

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -899
README.md CHANGED
@@ -1,633 +1,30 @@
1
- ---
2
- base_model: BAAI/bge-large-en-v1.5
3
- datasets: []
4
- language: []
5
- library_name: sentence-transformers
6
- metrics:
7
- - cosine_accuracy@1
8
- - cosine_accuracy@3
9
- - cosine_accuracy@5
10
- - cosine_accuracy@10
11
- - cosine_precision@1
12
- - cosine_precision@3
13
- - cosine_precision@5
14
- - cosine_precision@10
15
- - cosine_recall@1
16
- - cosine_recall@3
17
- - cosine_recall@5
18
- - cosine_recall@10
19
- - cosine_ndcg@10
20
- - cosine_mrr@10
21
- - cosine_map@100
22
- - dot_accuracy@1
23
- - dot_accuracy@3
24
- - dot_accuracy@5
25
- - dot_accuracy@10
26
- - dot_precision@1
27
- - dot_precision@3
28
- - dot_precision@5
29
- - dot_precision@10
30
- - dot_recall@1
31
- - dot_recall@3
32
- - dot_recall@5
33
- - dot_recall@10
34
- - dot_ndcg@10
35
- - dot_mrr@10
36
- - dot_map@100
37
- pipeline_tag: sentence-similarity
38
- tags:
39
- - sentence-transformers
40
- - sentence-similarity
41
- - feature-extraction
42
- - generated_from_trainer
43
- - dataset_size:98560
44
- - loss:MultipleNegativesRankingLoss
45
- widget:
46
- - source_sentence: Which bond has the longest maturity date, and what is the name
47
- of the issuing company?
48
- sentences:
49
- - 'Vanguard EUR Corporate Bond UCITS ETF Managed by Vanguard Global Advisers, LLC.497
50
- Investment Objective Vanguard EUR Corporate Bond UCITS ETF seeks to track the
51
- performance of the Bloomberg Euro-Aggregate: Corporates Index, a widely recognised
52
- benchmark designed to reflect the total universe of publicly traded, fixed-coupon,
53
- euro-denominated, investment-grade corporate bonds with maturities greater than
54
- 1 year and a minimum issue size of €300 million. Performance Summary (unaudited)
55
- The Performance Summary does not form part of the Financial Statements. • Inflation
56
- and policymakers’ efforts to rein it in took centre stage for the financial markets
57
- during much of the 12 months ended 30 June 2023. • Early in the period, energy
58
- prices continued to cool amid an outlook for slower economic growth, but price
59
- increases then broadened to other categories, notably the services sector, which
60
- felt the effects of tight labour markets. Central banks including the US Federal
61
- Reserve, the European Central Bank and the Bank of England reacted to the prospect
62
- of inflation remaining stubbornly high by aggressively hiking interest rates even
63
- as their actions fanned fears of a global recession down the road. • Although
64
- progress was slow, signs of inflation moderating later in the period led several
65
- major central banks to slow the pace of their interest rate hikes or even hit
66
- the pause button. • Bonds suffered early in the fiscal year amid aggressive rate
67
- hiking and later when markets began to anticipate that rates would remain higher
68
- for longer. With rising yields pushing prices down, global bonds ended the 12
69
- months in negative territory. • The ETF ’s benchmark index returned 0.14% for
70
- the 12-month period. • Among the largest constituents in the index, Italy, Austria
71
- and Belgium performed better than the index as a whole. Among the laggards finishing
72
- in negative territory were Sweden, the United States and Finland. • By sector,
73
- bonds issued by utilities returned more than those issued by industrial companies
74
- and financial institutions. • Longer-dated and lower-quality bonds generally performed
75
- better. Benchmark returns in the commentary above are in euros. Benchmark: Bloomberg
76
- Euro-Aggregate: Corporates Index Total Returns Periods Ended 30 June 2023 (Annualised
77
- for periods over one year) One Year Five YearsTen Years or Since Inception1 EUR
78
- Accumulating -0.08 % — -1.60 % Benchmark 0.14 — -1.48 Tracking Difference* -0.22
79
- EUR Distributing -0.08 % -1.15 % -0.04 % Benchmark 0.14 -1.06 0.05 Tracking Difference*
80
- -0.22 Sources: Vanguard Global Advisers, LLC, and Bloomberg. Returns are based
81
- on NAV with income reinvested. All of the returns in this report represent past
82
- performance, which is not a guarantee of future results that may be achieved by
83
- the fund. For performance data current to the most recent month-end, which may
84
- be higher or lower than that cited, visit our website at http://global.vanguard.com.
85
- Note, too, that both investment returns and principal value can fluctuate widely,
86
- so an investor ''s shares, when sold, could be worth more or less than their original
87
- cost. * The tracking difference between the fund return and the index return over
88
- a stated period of time can be attributed to a number of factors, including, without
89
- limitation, small differences in weightings, trading activity, transaction costs
90
- and differences in the valuation and withholding tax treatment between the fund
91
- and the index vendor. 1 Since-inception returns: EUR Accumulating, 19 February
92
- 2019; EUR Distributing, 24 February 2016.'
93
- - We continue to evaluate the expanded use of strategic locations, including cities
94
- in which we do not currently have a presence. As of December 2023 , 41% of our
95
- employees were working in strategic locations. We believe our investment in these
96
- strategic locations enables us to build centers of excellence around specific
97
- capabilities that support our business initiatives. Sustainability We have a long-standing
98
- commitment to sustainability. Our two priorities in this area are helping clients
99
- across industries decarbonize their businesses to support their transition to
100
- a low-carbon economy (Climate Transition) and to advance solutions that expand
101
- access, increase affordability, and drive outcomes to support sustainable economic
102
- growth (Inclusive Growth). Our strategy is to advance these two priorities through
103
- our work with our clients, and with strategic partners whose strengths and areas
104
- of focus complement our own, as well as through our supply chain. We established
105
- a Sustainable Finance Group (SFG), which serves as the centralized group that
106
- drives climate strategy and sustainability efforts across our firm, including
107
- commercial efforts alongside our businesses, to advance Climate Transition and
108
- Inclusive Growth. Since establishing SFG, our sustainable finance-related efforts
109
- have continued to evolve. For example, within Global Banking & Markets, we established
110
- the Sustainable Banking Group, a group focused on supporting our corporate clients
111
- in reducing their direct and indirect carbon emissions. Within Asset & Wealth
112
- Management there are multiple teams that specialize in sustainable investing.
113
- The Sustainability & Impact Solutions team in Asset & Wealth Management also helps
114
- mobilize the full range of insights, advisory services and investment solutions
115
- across our asset management client segments.THE GOLDMAN SACHS GROUP, INC. AND
116
- SUBSIDIARIES Goldman Sachs 2023 Form 10-K 7
117
- - $75,000 1.40% 1/9/2030 59,430 0.01% Brighthouse Financial, Inc. $78,000 4.70%
118
- 22/6/2047 59,389 0.01% Conagra Brands, Inc. $70,000 1.38% 1/11/2027 59,352 0.01%
119
- CVS Health Corp. $85,000 2.70% 21/8/2040 59,267 0.01% Microsoft Corp. $65,000
120
- 3.45% 8/8/2036 59,262 0.01% Athene Holding Ltd. $65,000 4.13% 12/1/2028 59,256
121
- 0.01% Microsoft Corp. $60,000 4.45% 3/11/2045 59,157 0.01% Chubb Corp. $55,000
122
- 6.00% 11/5/2037 59,057 0.01% Apple, Inc.1$80,000 2.38% 8/2/2041 59,017 0.01% Home
123
- Depot, Inc. $95,000 2.38% 15/3/2051 58,966 0.01% Gilead Sciences, Inc. $87,000
124
- 2.80% 1/10/2050 58,926 0.01% Lowe's Cos, Inc. $65,000 3.75% 1/4/2032 58,772 0.01%
125
- Bank of America NA $55,000 6.00% 15/10/2036 58,768 0.01% Morgan Stanley $67,000
126
- 4.30% 27/1/2045 58,612 0.01% Amazon.com, Inc. $65,000 1.00% 12/5/2026 58,448 0.01%
127
- Cigna Group $60,000 4.13% 15/11/2025 58,429 0.01% Mastercard, Inc. $70,000 3.65%
128
- 1/6/2049 58,395 0.01% Marsh & McLennan Cos, Inc. $70,000 2.25% 15/11/2030 58,218
129
- 0.01% Amgen, Inc. $70,000 2.30% 25/2/2031 58,168 0.01% Crown Castle, Inc. $85,000
130
- 3.25% 15/1/2051 58,134 0.01% Comcast Corp. $70,000 4.00% 1/11/2049 58,108 0.01%
131
- American Express Co. $60,000 2.50% 30/7/2024 58,013 0.01% FedEx Corp. $65,000
132
- 4.75% 15/11/2045 58,009 0.01% Comcast Corp. $60,000 3.38% 15/8/2025 57,927 0.01%
133
- Zimmer Biomet Holdings, Inc. $60,000 3.55% 1/4/2025 57,869 0.01% Charter Communications
134
- Operating LLC/Charter Communications Operating Capital $70,000 5.38% 1/5/2047
135
- 57,847 0.01% Huntington National Bank $60,000 5.65% 10/1/2030 57,626 0.01% Intel
136
- Corp. $90,000 3.10% 15/2/2060 57,605 0.01% Northern Trust Corp. $70,000 1.95%
137
- 1/5/2030 57,586 0.01% Eli Lilly & Co.
138
- - source_sentence: What is the interest rate of the bond issued by Public Service
139
- Co. of Colorado, and when does it mature?
140
- sentences:
141
- - CAD50,000 5.70% 9/11/2027 38,543 0.00% Hyundai Capital Canada, Inc. CAD55,000
142
- 3.20% 16/2/2027 38,219 0.00% TELUS Corp. CAD55,000 3.30% 2/5/2029 37,952 0.00%
143
- Royal Bank of Canada CAD60,000 1.67% 28/1/2033 37,930 0.00% Inter Pipeline Ltd.
144
- CAD50,000 5.71% 29/5/2030 37,831 0.00% Inter Pipeline Ltd. CAD50,000 5.85% 18/5/2032
145
- 37,676 0.00% Enbridge Gas, Inc. CAD55,000 2.90% 1/4/2030 37,496 0.00% Province
146
- of New Brunswick Canada CAD50,000 3.95% 14/8/2032 37,469 0.00% Canadian Tire Corp.,
147
- Ltd. CAD50,000 5.61% 4/9/2035 37,458 0.00% Toronto-Dominion Bank CAD50,000 3.23%
148
- 24/7/2024 36,962 0.00% Dream Summit Industrial LP CAD55,000 2.25% 12/1/2027 36,942
149
- 0.00% Enbridge Gas, Inc. CAD50,000 4.55% 17/8/2052 36,928 0.00% OMERS Realty Corp.
150
- CAD50,000 4.54% 9/4/2029 36,924 0.00% TELUS Corp. CAD60,000 4.10% 5/4/2051 36,720
151
- 0.00% Federation des Caisses Desjardins du Quebec CAD50,000 4.41% 19/5/2027 36,691
152
- 0.00% Canada Housing Trust No 1 CAD55,000 1.90% 15/3/2031 36,424 0.00% Enbridge
153
- Gas, Inc. CAD50,000 4.15% 17/8/2032 36,396 0.00% Province of New Brunswick Canada
154
- CAD45,000 4.80% 3/6/2041 36,265 0.00% CT CAD60,000 2.37% 6/1/2031 36,222 0.00%
155
- Finning International, Inc. CAD50,000 5.08% 13/6/2042 36,143 0.00% Bell Telephone
156
- Co. of Canada or Bell Canada CAD50,000 3.80% 21/8/2028 35,730 0.00% TransCanada
157
- PipeLines Ltd. $40,000 5.00% 16/10/2043 35,705 0.00% EPCOR Utilities, Inc. CAD55,000
158
- 2.41% 30/6/2031 35,588 0.00% Rogers Communications, Inc. CAD50,000 5.25% 15/4/2052
159
- 35,436 0.00% Bank of Montreal CAD50,000 2.08% 17/6/2030 35,111 0.00%
160
- - 50,000 2.65% 15/1/2032 37,370 0.00% Public Service Co. of Colorado 40,000 4.10%
161
- 1/6/2032 37,223 0.00% Phillips Edison Grocery Center Operating Partnership I LP
162
- 50,000 2.63% 15/11/2031 37,172 0.00% Corning, Inc. 40,000 4.70% 15/3/2037 37,091
163
- 0.00% Blackstone Holdings Finance Co. LLC 50,000 4.00% 2/10/2047 37,025 0.00%
164
- Oncor Electric Delivery Co. LLC 40,000 4.55% 1/12/2041 36,833 0.00% Entergy Mississippi
165
- LLC 50,000 3.50% 1/6/2051 36,806 0.00% Banner Health 50,000 2.91% 1/1/2042 36,544
166
- 0.00% Orlando Health Obligated Group 50,000 3.33% 1/10/2050 36,540 0.00% Arizona
167
- Public Service Co. 40,000 2.95% 15/9/2027 36,388 0.00% MultiCare Health System
168
- 60,000 2.80% 15/8/2050 36,301 0.00% West Virginia United Health System Obligated
169
- Group 55,000 3.13% 1/6/2050 36,285 0.00% Public Service Electric & Gas Co. 50,000
170
- 3.15% 1/1/2050 36,198 0.00% Leggett & Platt, Inc. 50,000 3.50% 15/11/2051 36,166
171
- 0.00% University of Chicago 50,000 3.00% 1/10/2052 36,075 0.00% STORE Capital
172
- Corp. 50,000 2.75% 18/11/2030 36,057 0.00% ERP Operating LP 46,000 4.00% 1/8/2047
173
- 36,025 0.00% Emory University 50,000 2.97% 1/9/2050 35,873 0.00% San Diego Gas
174
- & Electric Co. 50,000 3.32% 15/4/2050 35,755 0.00% OneAmerica Financial Partners,
175
- Inc. 50,000 4.25% 15/10/2050 35,752 0.00% Arizona Public Service Co. 45,000 4.25%
176
- 1/3/2049 35,649 0.00% W R Berkley Corp. 50,000 3.55% 30/3/2052 35,567 0.00%
177
- - 375,000 4.75% 1/12/2025 368,735 0.02% Vulcan Materials Co. 375,000 4.50% 1/4/2025
178
- 367,796 0.02% National Fuel Gas Co. 375,000 5.20% 15/7/2025 367,544 0.02% Trane
179
- Technologies Luxembourg Finance SA 385,000 3.50% 21/3/2026 367,408 0.02% CNO Global
180
- Funding 395,000 1.65% 6/1/2025 367,190 0.02% Prudential Financial, Inc. 400,000
181
- 1.50% 10/3/2026 365,739 0.02% Hanover Insurance Group, Inc. 375,000 4.50% 15/4/2026
182
- 363,094 0.02% Prudential Insurance Co. of America 350,000 8.30% 1/7/2025 362,568
183
- 0.02% Protective Life Global Funding 400,000 1.17% 15/7/2025 362,098 0.02% GLP
184
- Capital LP/GLP Financing II, Inc. 375,000 3.35% 1/9/2024 362,002 0.02% Healthpeak
185
- OP LLC 375,000 4.00% 1/6/2025 361,843 0.02% AutoNation, Inc. 375,000 3.50% 15/11/2024
186
- 361,718 0.02% United Airlines 2020-1 Class B Pass Through Trust 376,750 4.88%
187
- 15/1/2026 361,301 0.02% Teledyne Technologies, Inc. 400,000 1.60% 1/4/2026 361,204
188
- 0.02% American Electric Power Co., Inc. 400,000 1.00% 1/11/2025 361,128 0.02%
189
- Analog Devices, Inc. 375,000 2.95% 1/4/2025 360,435 0.02% Sherwin-Williams Co.
190
- 375,000 3.45% 1/8/2025 360,112 0.02% Met Tower Global Funding 375,000 3.70% 13/6/2025
191
- 359,524 0.02% Sherwin-Williams Co. 367,000 4.25% 8/8/2025 359,319 0.02% Principal
192
- Financial Group, Inc. 375,000 3.40% 15/5/2025 358,948 0.02% Georgia Power Co.
193
- 375,000 2.20% 15/9/2024 358,479 0.02% New York Life Global Funding 381,000 1.45%
194
- 14/1/2025 358,138 0.02% Cardinal Health, Inc. 370,000 3.50% 15/11/2024 357,994
195
- 0.02% Protective Life Global Funding 375,000 3.22% 28/3/2025 357,964 0.02% Franklin
196
- Resources, Inc. 375,000 2.85% 30/3/2025 356,865 0.02% Laboratory Corp. of America
197
- Holdings 400,000 1.55% 1/6/2026 356,846 0.02% Laboratory Corp. of America Holdings
198
- 375,000 2.30% 1/12/2024 356,466 0.02% Jackson National Life Global Funding 375,000
199
- 3.88% 11/6/2025 355,865 0.02% Principal Life Global Funding II 375,000 2.25% 21/11/2024
200
- 355,855 0.02% PACCAR Financial Corp. 375,000 1.80% 6/2/2025 354,610 0.02% TCI
201
- Communications, Inc.
202
- - source_sentence: Discuss the impact of economic conditions on the performance of
203
- bonds issued by entities like Henan Water Conservancy Investment Group Co., Ltd.
204
- sentences:
205
- - On November 20, 2023, the court denied the plaintiffs’ motion for a rehearing
206
- or for leave to amend.Rivian Automotive Inc. GS&Co. is among the underwriters
207
- named as defendants in putative securities class actions filed on March 7, 2022
208
- and February 28, 2023 in the U.S. District Court for the Central District of California
209
- and in the Superior Court of the State of California, County of Orange, respectively,
210
- relating to Rivian Automotive Inc.’s (Rivian) approximately $13.7 billion November
211
- 2021 initial public offering. In addition to the underwriters, the defendants
212
- include Rivian and certain of its officers and directors. GS&Co. underwrote 44,733,050
213
- shares of common stock representing an aggregate offering price of approximately
214
- $3.5 billion . On March 2, 2023, the plaintiffs in the federal court action filed
215
- an amended consolidated complaint, and on July 3, 2023, the court denied the defendants’
216
- motion to dismiss the amended consolidated complaint. On June 30, 2023, the court
217
- in the state court action granted the defendants’ motion to dismiss the complaint,
218
- and on September 1, 2023, the plaintiffs appealed. On December 1, 2023, the plaintiffs
219
- moved for class certification. Natera Inc. GS&Co. is among the underwriters named
220
- as defendants in putative securities class actions in New York Supreme Court,
221
- County of New York and the U.S. District Court for the Western District of Texas
222
- filed on March 10, 2022 and October 7, 2022, respectively, relating to Natera
223
- Inc.’s (Natera) approximately $585 million July 2021 public offering of common
224
- stock. In addition to the underwriters, the defendants include Natera and certain
225
- of its officers and directors. GS&Co. underwrote 1,449,000 shares of common stock
226
- representing an aggregate offering price of approximately $164 million . On July
227
- 15, 2022, the parties in the state court action filed a stipulation and proposed
228
- order approving the discontinuance of the action without prejudice. On September
229
- 11, 2023, the federal court granted in part and denied in part the defendants’
230
- motion to dismiss. Robinhood Markets, Inc. GS&Co. is among the underwriters named
231
- as defendants in a putative securities class action filed on December 17, 2021
232
- in the U.S. District Court for the Northern District of California relating to
233
- Robinhood Markets, Inc.’s (Robinhood) approximately $2.2 billion July 2021 initial
234
- public offering. In addition to the underwriters, the defendants include Robinhood
235
- and certain of its officers and directors. GS&Co. underwrote 18,039,706 shares
236
- of common stock representing an aggregate offering price of approximately $686
237
- million . On February 10, 2023, the court granted the defendants’ motion to dismiss
238
- the complaint with leave to amend, and on March 13, 2023, the plaintiffs filed
239
- a second amended complaint. On January 24, 2024, the court granted the defendants’
240
- motion to dismiss the second amended complaint without leave to amend.THE GOLDMAN
241
- SACHS GROUP, INC. AND SUBSIDIARIES Notes to Consolidated Financial Statements
242
- 222 Goldman Sachs 2023 Form 10-K
243
- - 200,000 3.50% 5/7/2027 187,785 0.03% Huarong Finance 2019 Co., Ltd. 200,000 3.25%
244
- 13/11/2024 187,354 0.03% Henan Water Conservancy Investment Group Co., Ltd. 200,000
245
- 2.80% 18/9/2025 185,811 0.03% CCBL Cayman 1 Corp., Ltd. 200,000 1.99% 21/7/2025
246
- 185,505 0.03% Hengjian International Investment Ltd. 200,000 1.88% 23/6/2025 185,112
247
- 0.03% Sinopec Group Overseas Development 2016 Ltd. 200,000 2.75% 29/9/2026 184,261
248
- 0.03% ICBCIL Finance Co., Ltd. 200,000 2.70% 27/1/2027 184,153 0.03% CDBL Funding
249
- 2 200,000 2.00% 4/3/2026 182,327 0.03% Chongqing International Logistics Hub Park
250
- Construction Co., Ltd. 200,000 4.30% 26/9/2024 182,270 0.03% Sunny Express Enterprises
251
- Corp. 200,000 3.13% 23/4/2030 180,767 0.03% China Construction Bank Corp. 200,000
252
- 1.46% 22/4/2026 180,688 0.03% Chalco Hong Kong Investment Co., Ltd. 200,000 2.10%
253
- 28/7/2026 180,686 0.03% Bank of China Ltd. 200,000 1.40% 28/4/2026 180,090 0.03%
254
- Shenwan Hongyuan International Finance Ltd. 200,000 1.80% 14/7/2026 179,360 0.03%
255
- SFG International Holdings Co., Ltd. 200,000 2.40% 3/6/2026 179,078 0.03% Sinopec
256
- Capital 2013 Ltd. 200,000 4.25% 24/4/2043 178,983 0.03% ICBCIL Finance Co., Ltd.
257
- 200,000 1.75% 2/8/2026 178,698 0.03% CSSC Capital 2015 Ltd. 200,000 2.10% 27/7/2026
258
- 178,662 0.03% Sinochem Offshore Capital Co., Ltd. 200,000 2.25% 24/11/2026 178,126
259
- 0.03% AVIC International Finance & Investment Ltd. 200,000 2.50% 17/11/2026 177,158
260
- 0.03% Huarong Finance II Co., Ltd. 200,000 4.88% 22/11/2026 176,528 0.03% Bright
261
- Galaxy International Ltd. 200,000 3.25% 15/7/2026 175,325 0.03% Central Plaza
262
- Development Ltd. 200,000 5.75% Perpetual 175,287 0.03% China Great Wall International
263
- Holdings III Ltd. 200,000 3.88% 31/8/2027 175,105 0.03% China Huaneng Group Hong
264
- Kong Treasury Management Holding Ltd. 200,000 2.70% 20/1/2031 172,985 0.03% Guoren
265
- Property & Casualty Insurance Co., Ltd. 200,000 3.35% 1/6/2026 171,853 0.03% Three
266
- Gorges Finance I Cayman Islands Ltd. 200,000 2.15% 22/9/2030 170,989 0.03% Blossom
267
- Joy Ltd.
268
- - 'The list includes the investments constituting the greatest proportion of investments
269
- of the financial product during the reference period which is: From 11 October
270
- 2022 to 30 June 2023What were the top investments of this financial product? The
271
- top investments of this Fund are set out below. These figures are percentages
272
- of net assets and are weighted averages of the market value as at the end of December
273
- 2022, March 2023 and June 2023. Largest investments Sector % Assets Country SAMSUNG
274
- ELECTRONICS CO LTD Telecommunications 3.88% Korea TOYOTA MOTOR CORP Consumer Discretionary
275
- 2.92% Japan AIA GROUP LTD Financials 2.08% Hong Kong COMMONWEALTH BANK OF AUSTRAL
276
- Financials 1.90% Australia SONY GROUP CORP Consumer Discretionary 1.74% Japan
277
- CSL LTD Health Care 1.53% Australia KEYENCE CORP Industrials 1.47% Japan MITSUBISHI
278
- UFJ FINANCIAL GRO Financials 1.32% Japan DAIICHI SANKYO CO LTD Health Care 1.04%
279
- Japan NATIONAL AUSTRALIA BANK LTD Financials 0.99% Australia SHIN-ETSU CHEMICAL
280
- CO LTD Basic Materials 0.96% Japan HONG KONG EXCHANGES & CLEAR Financials 0.88%
281
- Hong Kong SUMITOMO MITSUI FINANCIAL GR Financials 0.87% Japan TOKYO ELECTRON LTD
282
- Technology 0.87% Japan WESTPAC BANKING CORP Financials 0.86% Australia Asset allocation
283
- describes the share of investments in specific assets.What was the proportion
284
- of sustainability-related investments? Please see the information below in this
285
- respect. What was the asset allocation? The Fund invested 96.97% of its net assets
286
- in line with the ESG requirements of the Index, which is consistent with the environmental
287
- and/or social characteristics promoted by the Fund. The Fund did not commit to
288
- make any sustainable investments. The Fund did not use indirect exposures (including
289
- derivatives) to attain the environmental or social characteristics promoted by
290
- the Fund. The remaining 3.03% of the Fund’s net assets are in other investments
291
- (“#2 Other”), which are not aligned with environmental and/or social characteristics
292
- promoted by the Fund. Investments #1 Aligned with E/S characteristics 96.97% #2
293
- Other 3.03% #1A Sustainable N/A #1B Other E/S characteristics N/A #1 Aligned with
294
- E/S characteristics includes the investments of the financial product used to
295
- attain the environmental or social characteristics promoted by the financial product.
296
- 1002'
297
- - source_sentence: Identify the company with the highest number of shares listed in
298
- the provided context and state its fair value.
299
- sentences:
300
- - 'we do not have latitude in carrier selection and establishing rates with the
301
- Carrier. Revenue is recognized on a net basis for these transactions. Advertising
302
- Revenue We derive the majority of our advertising revenue from sponsored listing
303
- fees paid by Merchants and brands in exchange for advertising on our platform.
304
- Advertising revenue is recognized when an end-user engages with the sponsored
305
- listing based on the number of clicks. Revenue is presented on a gross basis in
306
- the amount billed to Merchants and brands as we control the advertisement before
307
- it is transferred to the end-user. Incentives to Customers Incentives provided
308
- to customers are recorded as a reduction of revenue if we do not receive a distinct
309
- good or service or cannot reasonably estimate the fair value of the good or service
310
- received. Incentives to customers that are not provided in exchange for a distinct
311
- good or service are evaluated as variable consideration, in the most likely amount
312
- to be earned by the customer at the time or as they are earned by customers, depending
313
- on the type of incentive. Since incentives are earned over a short period of time,
314
- there is limited uncertainty when estimating variable consideration. Incentives
315
- earned by customers for referring new customers are paid in exchange for a distinct
316
- service and are accounted for as customer acquisition costs. We expense such referral
317
- payments as incurred in sales and marketing expenses in the consolidated statements
318
- of operations. We expense costs to acquire new customer contracts as incurred
319
- because the amortization period would be one year or less. The amount recorded
320
- as an expense is the lesser of the amount of the incentive paid or the established
321
- fair value of the service received. Fair value of the service is established using
322
- amounts paid to vendors for similar services. The amounts paid to customers presented
323
- as sales and marketing expenses for the years ended December 31, 2021, 2022 and
324
- 2023 were immaterial. In some transactions, incentives and payments made to customers
325
- may exceed the revenue earned in the transaction. In these transactions, the resulting
326
- shortfall amount is recorded as a reduction of revenue. End-User Discounts and
327
- Promotions We offer discounts and promotions to end-users to encourage use of
328
- our platform. These are offered in various forms of discounts and promotions and
329
- include: Targeted end-user discounts and promotions: These discounts and promotions
330
- are offered to a limited number of end-users in a market to acquire, re-engage,
331
- or generally increase end-users use of the Platform, and are akin to a coupon.
332
- An example is an offer providing a discount on a limited number of rides or deliveries
333
- during a limited time period. We record the cost of these discounts and promotions
334
- to end-users who are not our customers as sales and marketing expenses at the
335
- time they are redeemed by the end-user. End-user referrals: These referrals are
336
- earned when an existing end-user (the referring end-user) refers a new end-user
337
- (the referred end-user) to the platform and the new end-user who is not our customer
338
- completes their first transaction on the platform. These referrals are typically
339
- paid in the form of a credit given to the referring end-user. These referrals
340
- are offered to attract new end-users to the Platform. We record the liability
341
- for these referrals and corresponding expenses as sales and marketing expenses
342
- at the time the referral is earned by the referring end-user. Market-wide promotions:
343
- These promotions are pricing actions in the form of discounts that reduce the
344
- end-user fare charged by Drivers and Merchants to end-users who are not our customers
345
- for all or substantially all Mobility or Delivery offerings in a specific market.
346
- This also includes any discounts offered under our subscription offerings and
347
- certain discounts within the Uber Rewards programs, which enable end-users to
348
- receive a fixed fare or a discount on all eligible rides. Accordingly, we record
349
- the cost of these promotions as a reduction of revenue at the time the transaction
350
- is completed. Refunds and Credits Refunds and credits to end-users due to end-user
351
- dissatisfaction with the Platform are recorded as sales and marketing expenses
352
- or as a reduction of revenue depending on whether the end-user is considered a
353
- customer based on the market. Refunds to end-users that we recover from Drivers
354
- and Merchants are recorded as a reduction of revenue. Other We have elected to
355
- exclude from revenue, taxes assessed by a governmental authority that are both
356
- imposed on and are concurrent with specific revenue producing transactions, and
357
- collected from Drivers, Merchants and end-users and remitted to governmental authorities.
358
- Accordingly, such amounts are not included as a component of revenue or cost of
359
- revenue. Practical Expedients We have utilized the practical expedient available
360
- under ASC 606-10-50-14 and do not disclose the value of unsatisfied performance
361
- obligations for contracts with an original expected length of one year or less.
362
- We have no significant financing components in our contracts with customers. 89'
363
- - 78 Vanguard ESG Emerging Markets All Cap UCITS ETF..Number of SharesFair Value
364
- US Dollars ($)% of Total Net Assets Yangzijiang Financial Holding Ltd. 9,300 2,336
365
- 0.01% Shanghai Jinjiang International Hotels Co., Ltd. Class A 400 2,328 0.01%
366
- Shanghai Junshi Biosciences Co., Ltd. Class H 800 2,328 0.01% China Risun Group
367
- Ltd. 5,000 2,322 0.01% Shoucheng Holdings Ltd. 10,000 2,322 0.01% Zoomlion Heavy
368
- Industry Science & Technology Co., Ltd. Class A 2,500 2,320 0.01% China Meidong
369
- Auto Holdings Ltd. 2,000 2,310 0.01% Zhejiang Century Huatong Group Co., Ltd.
370
- Class A 2,200 2,295 0.01% Huayu Automotive Systems Co., Ltd. Class A 900 2,284
371
- 0.01% Montage Technology Co., Ltd. Class A 289 2,281 0.01% PAX Global Technology
372
- Ltd. 3,000 2,274 0.01% China Railway Signal & Communication Corp., Ltd. Class
373
- H 6,000 2,266 0.01% People's Insurance Co. Group of China Ltd. Class A 2,800 2,248
374
- 0.01% Eoptolink Technology, Inc. Ltd. Class A 240 2,242 0.01% China Construction
375
- Bank Corp. Class A 2,600 2,237 0.01% AsiaInfo Technologies Ltd. 1,600 2,225 0.01%
376
- China Eastern Airlines Corp., Ltd. Class A 3,400 2,225 0.01% Towngas Smart Energy
377
- Co., Ltd. 5,000 2,220 0.01% Zhongyu Energy Holdings Ltd. 3,000 2,217 0.01% Kunlun
378
- Tech Co., Ltd. Class A 400 2,215 0.01% GoerTek, Inc. Class A 900 2,196 0.01% Remegen
379
- Co., Ltd. Class H 500 2,185 0.01% BAIC Motor Corp., Ltd. Class H 9,000 2,182 0.01%
380
- Zhejiang Dahua Technology Co., Ltd. Class A 800 2,172 0.01% Xinyi Energy Holdings
381
- Ltd. 6,600 2,156 0.01% Huizhou Desay Sv Automotive Co., Ltd. Class A 100 2,142
382
- 0.01% JCET Group Co., Ltd. Class A 500 2,142 0.01% China Jushi Co., Ltd. Class
383
- A 1,100 2,141 0.01% Ecovacs Robotics Co., Ltd. Class A 200 2,138 0.01% Haichang
384
- Ocean Park Holdings Ltd. 14,000 2,126 0.01% Bloomage Biotechnology Corp., Ltd.
385
- Class A 173 2,120 0.01% Lens Technology Co., Ltd. Class A 1,300 2,102 0.01% Hangzhou
386
- Steam Turbine Power Group Co., Ltd. Class B 1,800 2,097 0.01% Angang Steel Co.,
387
- Ltd. Class H 8,000 2,093 0.01% Great Wall Motor Co., Ltd. Class A 600 2,076 0.01%
388
- Sun Art Retail Group Ltd. 8,000 2,062 0.01% Noah Holdings Ltd. ADR 144 2,028 0.01%
389
- Anjoy Foods Group Co., Ltd. Class A 100 2,018 0.01% Chaozhou Three-Circle Group
390
- Co., Ltd.
391
- - We are regularly under audit by tax authorities in different jurisdictions. Although
392
- we believe that our provision for income taxes and our tax estimates are reasonable,
393
- tax authorities may disagree with certain positions we have taken. In addition,
394
- econom ic and political pressures to increase tax revenue in various jurisdictions
395
- may make resolving tax disputes favorably more difficult. We are currently under
396
- Internal Revenue Service audit for prior tax years, with the primary unresolved
397
- issues relating to transfer pricing. The final resolution of those audits, and
398
- other audits or litigation, may differ from the amounts recorded in our consolidated
399
- financial statements and may materially affect our consolidated financial statements
400
- in the period or periods in which that determina tion is made. We earn a significant
401
- amount of our operating income outside the U.S. A change in the mix of earnings
402
- and losses in countries with differing statutory tax rates, changes in our business
403
- or structure, or the expiration of or disputes about certain tax agreements in
404
- a particular country may result in higher effective tax rates for the company.
405
- In addition, changes in U.S. federal and state or international tax laws applicable
406
- to corporate multinationals, other fundamental law changes currently being considere
407
- d by many countries, including in the U.S., and changes in taxing jurisdictions’
408
- administrative interpretations, decisions, policies, and positions may materially
409
- adversely impact our consolidated financial statements.
410
- - source_sentence: What are the advantages and disadvantages of investing in corporate
411
- bonds compared to government bonds?
412
- sentences:
413
- - €100,000 2.88% 15/1/2038 92,965 0.02% Bank of New York Mellon Corp. $95,000 4.97%
414
- 26/4/2034 92,748 0.02% WPC Eurobond BV €100,000 1.35% 15/4/2028 92,674 0.02% Amgen,
415
- Inc.1$100,000 2.60% 19/8/2026 92,601 0.02% AT&T, Inc. €100,000 2.05% 19/5/2032
416
- 92,593 0.02% Aon Corp. $100,000 3.75% 2/5/2029 92,563 0.02% Chubb INA Holdings,
417
- Inc. $102,000 4.35% 3/11/2045 92,352 0.02% Bank of America Corp. $96,000 4.38%
418
- 27/4/2028 92,301 0.02% Verizon Communications, Inc. $117,000 1.50% 18/9/2030 92,243
419
- 0.02% Medtronic Global Holdings SCA €100,000 0.38% 15/10/2028 92,231 0.02% Intel
420
- Corp. $100,000 4.90% 5/8/2052 92,209 0.02% KeyBank NA $100,000 4.15% 8/8/2025
421
- 92,200 0.02% Aetna, Inc. $95,000 3.50% 15/11/2024 92,178 0.02% AT&T, Inc. $110,000
422
- 4.35% 15/6/2045 92,161 0.02% PepsiCo, Inc. €100,000 1.13% 18/3/2031 92,095 0.02%
423
- Ally Financial, Inc. $115,000 2.20% 2/11/2028 92,042 0.02% JPMorgan Chase & Co.
424
- £100,000 1.90% 28/4/2033 92,039 0.02% Westinghouse Air Brake Technologies Corp.
425
- $95,000 4.95% 15/9/2028 92,021 0.02% Viatris , Inc. $139,000 4.00% 22/6/2050 91,948
426
- 0.02% Amazon.com, Inc. $90,000 4.80% 5/12/2034 91,936 0.02% General Motors Financial
427
- Co., Inc. $95,000 3.50% 7/11/2024 91,890 0.02% US Bancorp $120,000 1.38% 22/7/2030
428
- 91,848 0.02% Goldman Sachs Group, Inc. $105,000 4.41% 23/4/2039 91,826 0.02% Blackstone
429
- Holdings Finance Co. LLC €100,000 1.50% 10/4/2029 91,820 0.02%
430
- - 171 Vanguard ESG North America All Cap UCITS ETF.Number of SharesFair Value US
431
- Dollars ($)% of Total Net Assets Topgolf Callaway Brands Corp. 339 6,729 0.01%
432
- LGI Homes, Inc. 49 6,610 0.01% Sirius XM Holdings, Inc. 1,417 6,419 0.01% American
433
- Airlines Group, Inc. 356 6,387 0.01% Lyft, Inc. Class A 661 6,339 0.01% Columbia
434
- Sportswear Co. 82 6,334 0.01% Helen of Troy Ltd. 58 6,265 0.01% Signet Jewelers
435
- Ltd. 95 6,200 0.01% MDC Holdings, Inc. 132 6,174 0.01% Kohl's Corp. 264 6,085
436
- 0.01% Frontdoor, Inc. 187 5,965 0.01% Carter's, Inc. 80 5,808 0.01% Boot Barn
437
- Holdings, Inc. 68 5,759 0.01% Rush Enterprises, Inc. Class A 94 5,710 0.01% Aritzia,
438
- Inc. 204 5,670 0.01% Papa John's International, Inc. 76 5,611 0.01% Cavco Industries,
439
- Inc. 19 5,605 0.01% Inter Parfums, Inc. 41 5,544 0.01% AMC Entertainment Holdings,
440
- Inc. Class A 1,239 5,452 0.01% Steven Madden Ltd. 164 5,361 0.01% Nordstrom, Inc.
441
- 257 5,261 0.01% Linamar Corp. 99 5,209 0.01% QuantumScape Corp. Class A 640 5,114
442
- 0.01% Foot Locker, Inc. 188 5,097 0.01% Peloton Interactive, Inc. Class A 654
443
- 5,029 0.01% Century Communities, Inc. 64 4,904 0.01% SeaWorld Entertainment, Inc.
444
- 87 4,873 0.01% Kontoor Brands, Inc. 115 4,842 0.01% Dorman Products, Inc. 61 4,809
445
- 0.01% Urban Outfitters, Inc. 145 4,804 0.01% Under Armour, Inc. Class A 651 4,700
446
- 0.01% Jack in the Box, Inc. 48 4,681 0.01% Cracker Barrel Old Country Store, Inc.
447
- 50 4,659 0.01% Dana, Inc. 272 4,624 0.01% Graham Holdings Co. Class B 8 4,572
448
- 0.01% Farfetch Ltd. Class A 751 4,536 0.01% American Eagle Outfitters, Inc. 379
449
- 4,472 0.01% Sonos, Inc. 270 4,409 0.01% Cinemark Holdings, Inc. 264 4,356 0.01%
450
- Winnebago Industries, Inc. 65 4,335 0.01% TripAdvisor, Inc. 258 4,254 0.01% Gap,
451
- Inc. 476 4,251 0.01% Liberty Media Corp.-Liberty Braves Class C 105 4,160 0.01%
452
- OPENLANE, Inc. 268 4,079 0.01% PriceSmart, Inc. 55 4,073 0.01% Leslie's, Inc.
453
- 432 4,056 0.01% National Vision Holdings, Inc. 164 3,984 0.01% Six Flags Entertainment
454
- Corp. 153 3,975 0.01% Luminar Technologies, Inc.
455
- - 924 Vanguard USD Treasury Bond UCITS ETF Principal US Dollars ($) CouponMaturity
456
- DateFair Value US Dollars ($)% of Total Net Assets United States Treasury Note
457
- 8,475,000 1.88% 28/2/2027 7,769,854 0.47% United States Treasury Bond 9,088,000
458
- 3.00% 15/8/2052 7,731,900 0.46% United States Treasury Note 8,907,000 1.38% 31/12/2028
459
- 7,726,823 0.46% United States Treasury Note 8,184,000 1.13% 15/1/2025 7,696,477
460
- 0.46% United States Treasury Bond 10,590,000 1.88% 15/2/2041 7,692,642 0.46% United
461
- States Treasury Note 8,466,000 0.25% 30/9/2025 7,668,344 0.46% United States Treasury
462
- Note 8,266,700 1.63% 15/2/2026 7,659,614 0.46% United States Treasury Note 8,957,000
463
- 0.63% 31/12/2027 7,654,036 0.46% United States Treasury Note 8,087,000 0.38% 15/8/2024
464
- 7,651,060 0.46% United States Treasury Note 8,000,500 2.13% 15/5/2025 7,596,412
465
- 0.46% United States Treasury Note 8,035,000 2.50% 31/3/2027 7,530,302 0.45% United
466
- States Treasury Note 8,138,700 1.63% 15/5/2026 7,511,766 0.45% United States Treasury
467
- Note 8,464,000 1.75% 31/1/2029 7,483,366 0.45% United States Treasury Note 8,296,000
468
- 0.88% 30/6/2026 7,474,826 0.45% United States Treasury Note 8,078,000 2.00% 15/11/2026
469
- 7,472,781 0.45% United States Treasury Note 7,874,000 1.50% 15/2/2025 7,432,010
470
- 0.45% United States Treasury Note 7,794,000 1.75% 15/3/2025 7,372,332 0.44% United
471
- States Treasury Bond 10,008,000 2.00% 15/11/2041 7,327,732 0.44% United States
472
- Treasury Note 8,106,000 0.38% 30/11/2025 7,316,932 0.44% United States Treasury
473
- Note 7,738,000 2.75% 30/4/2027 7,309,992 0.44% United States Treasury Bond 11,011,000
474
- 1.88% 15/11/2051 7,270,701 0.44% United States Treasury Bond 10,047,000 2.25%
475
- 15/2/2052 7,263,667 0.44% United States Treasury Note 7,416,000 3.25% 30/6/2027
476
- 7,132,686 0.43% United States Treasury Note 7,559,000 2.63% 31/5/2027 7,103,098
477
- 0.43% United States Treasury Note 7,729,500 2.38% 15/5/2029 7,046,526 0.42% United
478
- States Treasury Note 7,855,000 1.88% 28/2/2029 6,986,041 0.42% United States Treasury
479
- Note 7,023,000 4.13% 30/9/2027 6,984,044 0.42% United States Treasury Note 7,000,000
480
- 4.00% 30/6/2028 6,961,
481
- model-index:
482
- - name: SentenceTransformer based on BAAI/bge-large-en-v1.5
483
- results:
484
- - task:
485
- type: information-retrieval
486
- name: Information Retrieval
487
- dataset:
488
- name: Unknown
489
- type: unknown
490
- metrics:
491
- - type: cosine_accuracy@1
492
- value: 0.4509054895302773
493
- name: Cosine Accuracy@1
494
- - type: cosine_accuracy@3
495
- value: 0.694538766270515
496
- name: Cosine Accuracy@3
497
- - type: cosine_accuracy@5
498
- value: 0.784804753820034
499
- name: Cosine Accuracy@5
500
- - type: cosine_accuracy@10
501
- value: 0.8679966044142614
502
- name: Cosine Accuracy@10
503
- - type: cosine_precision@1
504
- value: 0.4509054895302773
505
- name: Cosine Precision@1
506
- - type: cosine_precision@3
507
- value: 0.23151292209017169
508
- name: Cosine Precision@3
509
- - type: cosine_precision@5
510
- value: 0.1569609507640068
511
- name: Cosine Precision@5
512
- - type: cosine_precision@10
513
- value: 0.08679966044142615
514
- name: Cosine Precision@10
515
- - type: cosine_recall@1
516
- value: 0.4509054895302773
517
- name: Cosine Recall@1
518
- - type: cosine_recall@3
519
- value: 0.694538766270515
520
- name: Cosine Recall@3
521
- - type: cosine_recall@5
522
- value: 0.784804753820034
523
- name: Cosine Recall@5
524
- - type: cosine_recall@10
525
- value: 0.8679966044142614
526
- name: Cosine Recall@10
527
- - type: cosine_ndcg@10
528
- value: 0.6578616098378955
529
- name: Cosine Ndcg@10
530
- - type: cosine_mrr@10
531
- value: 0.5905876923491564
532
- name: Cosine Mrr@10
533
- - type: cosine_map@100
534
- value: 0.5964470032488818
535
- name: Cosine Map@100
536
- - type: dot_accuracy@1
537
- value: 0.4509054895302773
538
- name: Dot Accuracy@1
539
- - type: dot_accuracy@3
540
- value: 0.694538766270515
541
- name: Dot Accuracy@3
542
- - type: dot_accuracy@5
543
- value: 0.784804753820034
544
- name: Dot Accuracy@5
545
- - type: dot_accuracy@10
546
- value: 0.8679966044142614
547
- name: Dot Accuracy@10
548
- - type: dot_precision@1
549
- value: 0.4509054895302773
550
- name: Dot Precision@1
551
- - type: dot_precision@3
552
- value: 0.23151292209017169
553
- name: Dot Precision@3
554
- - type: dot_precision@5
555
- value: 0.1569609507640068
556
- name: Dot Precision@5
557
- - type: dot_precision@10
558
- value: 0.08679966044142615
559
- name: Dot Precision@10
560
- - type: dot_recall@1
561
- value: 0.4509054895302773
562
- name: Dot Recall@1
563
- - type: dot_recall@3
564
- value: 0.694538766270515
565
- name: Dot Recall@3
566
- - type: dot_recall@5
567
- value: 0.784804753820034
568
- name: Dot Recall@5
569
- - type: dot_recall@10
570
- value: 0.8679966044142614
571
- name: Dot Recall@10
572
- - type: dot_ndcg@10
573
- value: 0.6578616098378955
574
- name: Dot Ndcg@10
575
- - type: dot_mrr@10
576
- value: 0.5905876923491564
577
- name: Dot Mrr@10
578
- - type: dot_map@100
579
- value: 0.5964470032488818
580
- name: Dot Map@100
581
- ---
582
 
583
- # SentenceTransformer based on BAAI/bge-large-en-v1.5
584
 
585
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
586
 
587
- ## Model Details
 
 
588
 
589
- ### Model Description
590
  - **Model Type:** Sentence Transformer
591
- - **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
 
592
  - **Maximum Sequence Length:** 512 tokens
593
- - **Output Dimensionality:** 1024 tokens
594
  - **Similarity Function:** Cosine Similarity
595
- <!-- - **Training Dataset:** Unknown -->
596
- <!-- - **Language:** Unknown -->
597
- <!-- - **License:** Unknown -->
598
-
599
- ### Model Sources
600
-
601
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
602
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
603
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
604
-
605
- ### Full Model Architecture
606
-
607
- ```
608
- SentenceTransformer(
609
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
610
- (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
611
- (2): Normalize()
612
- )
613
- ```
614
-
615
- ## Usage
616
-
617
- ### Direct Usage (Sentence Transformers)
618
 
619
- First install the Sentence Transformers library:
620
 
621
- ```bash
622
- pip install -U sentence-transformers
623
- ```
624
 
625
- Then you can load this model and run inference.
626
  ```python
627
  from sentence_transformers import SentenceTransformer
628
 
629
  # Download from the 🤗 Hub
630
  model = SentenceTransformer("sujet-ai/Marsilia-Embedding-EN-Large")
 
631
  # Run inference
632
  sentences = [
633
  'What are the advantages and disadvantages of investing in corporate bonds compared to government bonds?',
@@ -644,261 +41,31 @@ print(similarities.shape)
644
  # [3, 3]
645
  ```
646
 
647
- <!--
648
- ### Direct Usage (Transformers)
649
-
650
- <details><summary>Click to see the direct usage in Transformers</summary>
651
-
652
- </details>
653
- -->
654
-
655
- <!--
656
- ### Downstream Usage (Sentence Transformers)
657
-
658
- You can finetune this model on your own dataset.
659
-
660
- <details><summary>Click to expand</summary>
661
-
662
- </details>
663
- -->
664
-
665
- <!--
666
- ### Out-of-Scope Use
667
-
668
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
669
- -->
670
-
671
- ## Evaluation
672
-
673
- ### Metrics
674
-
675
- #### Information Retrieval
676
-
677
- * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
678
 
679
- | Metric | Value |
680
- |:--------------------|:-----------|
681
- | cosine_accuracy@1 | 0.4509 |
682
- | cosine_accuracy@3 | 0.6945 |
683
- | cosine_accuracy@5 | 0.7848 |
684
- | cosine_accuracy@10 | 0.868 |
685
- | cosine_precision@1 | 0.4509 |
686
- | cosine_precision@3 | 0.2315 |
687
- | cosine_precision@5 | 0.157 |
688
- | cosine_precision@10 | 0.0868 |
689
- | cosine_recall@1 | 0.4509 |
690
- | cosine_recall@3 | 0.6945 |
691
- | cosine_recall@5 | 0.7848 |
692
- | cosine_recall@10 | 0.868 |
693
- | cosine_ndcg@10 | 0.6579 |
694
- | cosine_mrr@10 | 0.5906 |
695
- | **cosine_map@100** | **0.5964** |
696
- | dot_accuracy@1 | 0.4509 |
697
- | dot_accuracy@3 | 0.6945 |
698
- | dot_accuracy@5 | 0.7848 |
699
- | dot_accuracy@10 | 0.868 |
700
- | dot_precision@1 | 0.4509 |
701
- | dot_precision@3 | 0.2315 |
702
- | dot_precision@5 | 0.157 |
703
- | dot_precision@10 | 0.0868 |
704
- | dot_recall@1 | 0.4509 |
705
- | dot_recall@3 | 0.6945 |
706
- | dot_recall@5 | 0.7848 |
707
- | dot_recall@10 | 0.868 |
708
- | dot_ndcg@10 | 0.6579 |
709
- | dot_mrr@10 | 0.5906 |
710
- | dot_map@100 | 0.5964 |
711
 
712
- <!--
713
- ## Bias, Risks and Limitations
714
 
715
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
716
- -->
717
 
718
- <!--
719
- ### Recommendations
720
-
721
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
722
- -->
723
-
724
- ## Training Details
725
-
726
- ### Training Dataset
727
-
728
- #### Unnamed Dataset
729
-
730
-
731
- * Size: 98,560 training samples
732
- * Columns: <code>sentence_0</code> and <code>sentence_1</code>
733
- * Approximate statistics based on the first 1000 samples:
734
- | | sentence_0 | sentence_1 |
735
- |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
736
- | type | string | string |
737
- | details | <ul><li>min: 13 tokens</li><li>mean: 24.64 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 22 tokens</li><li>mean: 467.11 tokens</li><li>max: 512 tokens</li></ul> |
738
- * Samples:
739
- | sentence_0 | sentence_1 |
740
- |:--------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
741
- | <code>Define "Bankruptcy Law" as mentioned in the context. What are its implications for the company?</code> | <code>(5) a court of competent jurisdiction enters an order or decree under any Bankruptcy Law that: •is for relief against us in an involuntary case, or adjudicates us insolvent or bankrupt; •appoints a custodian of us or for all or substantially all of our property; or •orders the winding-up or liquidation of us (or any similar relief is granted under any foreign laws); and the order or decree remains unstayed and in effect for 90 days (or, in the case of the 2018 Indenture, 90 consecutive days); or (6) any other event of default provided with respect to debt securities of such series occurs. “Bankruptcy Law” means Title 11, United States Code or any similar federal or state or foreign law for the relief of debtors. “Custodian” means any custodian, receiver, trustee, assignee, liquidator or other similar official under any Bankruptcy Law. If an event of default with respect to debt securities of any series (other than an event of default relating to certain events of bankruptcy, insolvency, or reorganization of us) occurs and is continuing, the trustee by notice to us, or the holders of, in the case of the 2013 Indenture, at least 25% in aggregate principal amount of the outstanding debt securities of such series , and in the case of the 2018 Indenture, at least 33% in aggregate principal amount of the outstanding debt securities of such series, by notice to us and the trustee, may, and the trustee at the request of these holders will, declare the principal of and premium, if any, and accrued and unpaid interest on all the debt securities of such series to be due and payable. Upon such a declaration, such principal, premium and accrued and unpaid interest will be due and payable immediately. If an event of default relating to certain events of bankruptcy, insolvency, or reorganization of us occurs and is continuing, the principal of and premium, if any, and accrued and unpaid interest on the debt securities of such series will become and be immediately due and payable without any declaration or other act on the part of the trustee or any holders. The holders of not less than a majority in aggregate principal amount of the outstanding debt securities of any series may rescind a declaration of acceleration and its consequences, if we have deposited certain sums with the trustee and all events of default with respect to the debt securities of such series, other than the non-payment of the principal or interest which have become due solely by such acceleration, have been cured or waived, as provided in the Indentures. An event of default for a particular series of debt securities does not necessarily constitute an event of default for any other series of debt securities issued under the Indentures. We are required to furnish the trustee annually within 120 days after the end of our fiscal year a statement by one of our officers to the effect that, to the best knowledge of such officer, we are not in default in the fulfillment of any of our obligations under the applicable Indenture or, if there has been a default in the fulfillment of any such obligation, specifying each such default and the nature and status thereof. No holder of any debt securities of any series will have any right to institute any judicial or other proceeding with respect to the applicable Indenture, or for the appointment of a receiver or trustee, or for any other remedy unless: (1) an event of default has occurred and is continuing and such holder has given the trustee prior written notice of such continuing event of default with respect to the debt securities of such series; (2) in the case of the 2013 Indenture, the holders of not less than 25% of the aggregate principal amount of the outstanding debt securities of such series, and in the case of the 2018 Indenture, the holders of not less than 33% of the aggregate principal amount of the outstanding debt securities of such series have requested the trustee to institute proceedings in respect of such event of default; (3) the trustee has been offered indemnity reasonably satisfactory to it against its costs, expenses and liabilities in complying with such request; (4) the trustee has failed to institute proceedings 60 days after the receipt of such notice, request and offer of indemnity; and 10</code> |
742
- | <code>What is the total amount of derivative liabilities for currencies as of December 2023, and how does it compare to the previous year?</code> | <code>The tables below present the gross fair value and the notional amounts of derivative contracts by major product type, the amounts of counterparty and cash collateral netting in the consolidated balance sheets, as well as cash and securities collateral posted and received under enforceable credit support agreements that do not meet the criteria for netting under U.S. GAAP. As of December 2023 As of December 2022 $ in millionsDerivative Assets Derivative Liabilities Derivative Assets Derivative Liabilities Not accounted for as hedges Exchange-traded $ 3,401 $ 1,129 $ 675 $ 1,385 OTC-cleared 67,815 64,490 74,297 72,979 Bilateral OTC 171,109 149,444 195,052 174,687 Total interest rates 242,325 215,063 270,024 249,051 OTC-cleared 1,271 1,533 1,516 1,802 Bilateral OTC 11,554 8,601 10,751 9,478 Total credit 12,825 10,134 12,267 11,280 Exchange-traded 708 15 1,041 22 OTC-cleared 1,033 1,632 520 589 Bilateral OTC 88,158 95,742 102,301 111,276 Total currencies 89,899 97,389 103,862 111,887 Exchange-traded 5,468 5,998 9,225 9,542 OTC-cleared 635 711 698 838 Bilateral OTC 10,739 11,234 30,017 22,745 Total commodities 16,842 17,943 39,940 33,125 Exchange-traded 31,315 39,247 26,302 26,607 OTC-cleared 122 171 685 19 Bilateral OTC 28,601 40,696 23,574 30,157 Total equities 60,038 80,114 50,561 56,783 Subtotal 421,929 420,643 476,654 462,126 Accounted for as hedges Bilateral OTC 298 9 335 11 Total interest rates 298 9 335 11 OTC-cleared – 7 29 29 Bilateral OTC 5 208 53 256 Total currencies 5 215 82 285 Subtotal 303 224 417 296 Total gross fair value $ 422,232 $ 420,867 $ 477,071 $ 462,422 Offset in the consolidated balance sheets Exchange-traded $ (32,722) $ (32,722) $ (31,229) $ (31,229) OTC-cleared (67,272) (67,272) (75,349) (75,349) Bilateral OTC (221,395) (221,395) (254,304) (254,304) Counterparty netting (321,389) (321,389) (360,882) (360,882) OTC-cleared (1,335) (486) (1,388) (406) Bilateral OTC (48,388) (42,238) (55,388) (46,399) Cash collateral netting (49,723) (42,724) (56,776) (46,805) Total amounts offset $ (371,112) $ (364,113) $ (417,658) $ (407,687) Included in the consolidated balance sheets Exchange-traded $ 8,170 $ 13,667 $ 6,014 $ 6,327 OTC-cleared 2,269 786 1,008 501 Bilateral OTC 40,681 42,</code> |
743
- | <code>What is the significance of the percentage of total net assets for each company listed in the context?</code> | <code>325 Vanguard FTSE Emerging Markets UCITS ETF..Number of SharesFair Value US Dollars ($)% of Total Net Assets Tongkun Group Co., Ltd. Class A 61,400 111,831 0.01% Bluefocus Intelligent Communications Group Co., Ltd. Class A 84,000 111,657 0.01% Beijing United Information Technology Co., Ltd. Class A 21,953 111,443 0.01% Shanghai Zhenhua Heavy Industries Co., Ltd. Class B 464,425 110,998 0.01% Wuchan Zhongda Group Co., Ltd. Class A 162,600 110,415 0.01% Hubei Energy Group Co., Ltd. Class A 175,917 110,269 0.01% Offshore Oil Engineering Co., Ltd. Class A 137,100 110,248 0.01% Siasun Robot & Automation Co., Ltd. Class A 48,100 110,220 0.01% Zhejiang Huahai Pharmaceutical Co., Ltd. Class A 43,432 109,911 0.01% Amlogic Shanghai Co., Ltd. Class A 9,446 109,486 0.01% Beijing Wantai Biological Pharmacy Enterprise Co., Ltd. Class A 11,923 109,432 0.01% Sailun Group Co., Ltd. Class A 69,800 109,284 0.01% Shenzhen Kedali Industry Co., Ltd. Class A 6,000 109,075 0.01% Shan Xi Hua Yang Group New Energy Co., Ltd. Class A 100,050 108,786 0.00% Changzhou Xingyu Automotive Lighting Systems Co., Ltd. Class A 6,400 108,737 0.00% Xiamen C & D, Inc. Class A 72,500 108,728 0.00% Jointown Pharmaceutical Group Co., Ltd. Class A 75,841 108,213 0.00% Shenzhen Kangtai Biological Products Co., Ltd. Class A 31,000 108,194 0.00% Ningxia Baofeng Energy Group Co., Ltd. Class A 61,803 107,128 0.00% Huaxin Cement Co., Ltd. Class H 123,400 106,920 0.00% Shanghai Junshi Biosciences Co., Ltd. Class A 20,128 106,633 0.00% StarPower Semiconductor Ltd. Class A 3,600 106,494 0.00% People.cn Co., Ltd. Class A 26,525 106,468 0.00% Asymchem Laboratories Tianjin Co., Ltd. Class A 6,500 105,307 0.00% China National Accord Medicines Corp., Ltd. Class A 17,550 105,206 0.00% Bloomage Biotechnology Corp., Ltd. Class A 8,582 105,181 0.00% Jason Furniture Hangzhou Co., Ltd. Class A 19,980 104,778 0.00% Chengxin Lithium Group Co., Ltd. Class A 23,900 104,703 0.00% Shanghai Friendess Electronic Technology Corp., Ltd. Class A 4,037 104,637 0.00% Flat Glass Group Co., Ltd. Class A 19,700 104,284 0.00% Guangdong Electric Power Development Co., Ltd. Class A 103,900 104,260 0.00% Hangzhou Lion Electronics Co., Ltd. Class A 20,628 104,149 0.00% YongXing Special Materials Technology Co., Ltd. Class A 12,090 104,052 0.00% Hongfa Technology Co., Ltd.</code> |
744
- * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
745
- ```json
746
- {
747
- "scale": 20.0,
748
- "similarity_fct": "cos_sim"
749
- }
750
- ```
751
 
752
  ### Training Hyperparameters
753
- #### Non-Default Hyperparameters
754
-
755
- - `eval_strategy`: steps
756
- - `per_device_train_batch_size`: 64
757
- - `per_device_eval_batch_size`: 64
758
- - `num_train_epochs`: 10
759
- - `batch_sampler`: no_duplicates
760
- - `multi_dataset_batch_sampler`: round_robin
761
-
762
- #### All Hyperparameters
763
- <details><summary>Click to expand</summary>
764
-
765
- - `overwrite_output_dir`: False
766
- - `do_predict`: False
767
- - `eval_strategy`: steps
768
- - `prediction_loss_only`: True
769
- - `per_device_train_batch_size`: 64
770
- - `per_device_eval_batch_size`: 64
771
- - `per_gpu_train_batch_size`: None
772
- - `per_gpu_eval_batch_size`: None
773
- - `gradient_accumulation_steps`: 1
774
- - `eval_accumulation_steps`: None
775
- - `learning_rate`: 5e-05
776
- - `weight_decay`: 0.0
777
- - `adam_beta1`: 0.9
778
- - `adam_beta2`: 0.999
779
- - `adam_epsilon`: 1e-08
780
- - `max_grad_norm`: 1
781
- - `num_train_epochs`: 10
782
- - `max_steps`: -1
783
- - `lr_scheduler_type`: linear
784
- - `lr_scheduler_kwargs`: {}
785
- - `warmup_ratio`: 0.0
786
- - `warmup_steps`: 0
787
- - `log_level`: passive
788
- - `log_level_replica`: warning
789
- - `log_on_each_node`: True
790
- - `logging_nan_inf_filter`: True
791
- - `save_safetensors`: True
792
- - `save_on_each_node`: False
793
- - `save_only_model`: False
794
- - `restore_callback_states_from_checkpoint`: False
795
- - `no_cuda`: False
796
- - `use_cpu`: False
797
- - `use_mps_device`: False
798
- - `seed`: 42
799
- - `data_seed`: None
800
- - `jit_mode_eval`: False
801
- - `use_ipex`: False
802
- - `bf16`: False
803
- - `fp16`: False
804
- - `fp16_opt_level`: O1
805
- - `half_precision_backend`: auto
806
- - `bf16_full_eval`: False
807
- - `fp16_full_eval`: False
808
- - `tf32`: None
809
- - `local_rank`: 0
810
- - `ddp_backend`: None
811
- - `tpu_num_cores`: None
812
- - `tpu_metrics_debug`: False
813
- - `debug`: []
814
- - `dataloader_drop_last`: False
815
- - `dataloader_num_workers`: 0
816
- - `dataloader_prefetch_factor`: None
817
- - `past_index`: -1
818
- - `disable_tqdm`: False
819
- - `remove_unused_columns`: True
820
- - `label_names`: None
821
- - `load_best_model_at_end`: False
822
- - `ignore_data_skip`: False
823
- - `fsdp`: []
824
- - `fsdp_min_num_params`: 0
825
- - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
826
- - `fsdp_transformer_layer_cls_to_wrap`: None
827
- - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
828
- - `deepspeed`: None
829
- - `label_smoothing_factor`: 0.0
830
- - `optim`: adamw_torch
831
- - `optim_args`: None
832
- - `adafactor`: False
833
- - `group_by_length`: False
834
- - `length_column_name`: length
835
- - `ddp_find_unused_parameters`: None
836
- - `ddp_bucket_cap_mb`: None
837
- - `ddp_broadcast_buffers`: False
838
- - `dataloader_pin_memory`: True
839
- - `dataloader_persistent_workers`: False
840
- - `skip_memory_metrics`: True
841
- - `use_legacy_prediction_loop`: False
842
- - `push_to_hub`: False
843
- - `resume_from_checkpoint`: None
844
- - `hub_model_id`: None
845
- - `hub_strategy`: every_save
846
- - `hub_private_repo`: False
847
- - `hub_always_push`: False
848
- - `gradient_checkpointing`: False
849
- - `gradient_checkpointing_kwargs`: None
850
- - `include_inputs_for_metrics`: False
851
- - `eval_do_concat_batches`: True
852
- - `fp16_backend`: auto
853
- - `push_to_hub_model_id`: None
854
- - `push_to_hub_organization`: None
855
- - `mp_parameters`:
856
- - `auto_find_batch_size`: False
857
- - `full_determinism`: False
858
- - `torchdynamo`: None
859
- - `ray_scope`: last
860
- - `ddp_timeout`: 1800
861
- - `torch_compile`: False
862
- - `torch_compile_backend`: None
863
- - `torch_compile_mode`: None
864
- - `dispatch_batches`: None
865
- - `split_batches`: None
866
- - `include_tokens_per_second`: False
867
- - `include_num_input_tokens_seen`: False
868
- - `neftune_noise_alpha`: None
869
- - `optim_target_modules`: None
870
- - `batch_eval_metrics`: False
871
- - `eval_on_start`: False
872
- - `batch_sampler`: no_duplicates
873
- - `multi_dataset_batch_sampler`: round_robin
874
-
875
- </details>
876
-
877
- ### Training Logs
878
- | Epoch | Step | Training Loss | cosine_map@100 |
879
- |:------:|:----:|:-------------:|:--------------:|
880
- | 0.0649 | 100 | - | 0.5166 |
881
- | 0.1299 | 200 | - | 0.5361 |
882
- | 0.1948 | 300 | - | 0.5431 |
883
- | 0.2597 | 400 | - | 0.5565 |
884
- | 0.3247 | 500 | 1.4823 | 0.5605 |
885
- | 0.3896 | 600 | - | 0.5703 |
886
- | 0.4545 | 700 | - | 0.5738 |
887
- | 0.5195 | 800 | - | 0.5776 |
888
- | 0.5844 | 900 | - | 0.5763 |
889
- | 0.6494 | 1000 | 0.9938 | 0.5771 |
890
- | 0.7143 | 1100 | - | 0.5783 |
891
- | 0.7792 | 1200 | - | 0.5826 |
892
- | 0.8442 | 1300 | - | 0.5864 |
893
- | 0.9091 | 1400 | - | 0.5902 |
894
- | 0.9740 | 1500 | 0.8712 | 0.5919 |
895
- | 1.0 | 1540 | - | 0.5906 |
896
- | 1.0390 | 1600 | - | 0.5833 |
897
- | 1.1039 | 1700 | - | 0.5876 |
898
- | 1.1688 | 1800 | - | 0.5964 |
899
 
 
 
 
 
 
 
 
 
 
 
900
 
901
  ### Framework Versions
 
902
  - Python: 3.10.13
903
  - Sentence Transformers: 3.0.1
904
  - Transformers: 4.42.3
@@ -907,49 +74,27 @@ You can finetune this model on your own dataset.
907
  - Datasets: 2.20.0
908
  - Tokenizers: 0.19.1
909
 
910
- ## Citation
911
 
912
- ### BibTeX
913
 
914
- #### Sentence Transformers
915
- ```bibtex
916
- @inproceedings{reimers-2019-sentence-bert,
917
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
918
- author = "Reimers, Nils and Gurevych, Iryna",
919
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
920
- month = "11",
921
- year = "2019",
922
- publisher = "Association for Computational Linguistics",
923
- url = "https://arxiv.org/abs/1908.10084",
924
- }
925
- ```
926
 
927
- #### MultipleNegativesRankingLoss
928
- ```bibtex
929
- @misc{henderson2017efficient,
930
- title={Efficient Natural Language Response Suggestion for Smart Reply},
931
- author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
932
- year={2017},
933
- eprint={1705.00652},
934
- archivePrefix={arXiv},
935
- primaryClass={cs.CL}
936
- }
937
- ```
938
-
939
- <!--
940
- ## Glossary
941
 
942
- *Clearly define terms in order to be accessible across audiences.*
943
- -->
944
 
945
- <!--
946
- ## Model Card Authors
947
 
948
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
949
- -->
 
 
 
 
 
 
950
 
951
- <!--
952
- ## Model Card Contact
953
 
954
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
955
- -->
 
1
+ # Model Card: sujet-ai/Marsilia-Embeddings-EN-Large 🚀
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ ## Introduction 🌟
4
 
5
+ **Marsilia-Embeddings-EN-Large** is an English language embedding model specifically designed for financial domain tasks. This model serves as a proof of concept, demonstrating the critical importance of fine-tuning embedding models for specific tasks in Retrieval-Augmented Generation (RAG) applications.
6
 
7
+ By focusing on the financial domain, Marsilia-Embeddings-EN-Large achieves performance that surpasses even closed-source models like OpenAI's embeddings, while offering a more cost-effective solution. This showcases how targeted fine-tuning can dramatically enhance the capabilities of open-source models, making them competitive with or even superior to proprietary alternatives in specialized domains.
8
+
9
+ ## Model Details 📊
10
 
 
11
  - **Model Type:** Sentence Transformer
12
+ - **Language:** English 🇬🇧
13
+ - **Base Model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5)
14
  - **Maximum Sequence Length:** 512 tokens
15
+ - **Output Dimensionality:** 1024
16
  - **Similarity Function:** Cosine Similarity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ ## Usage 💻
19
 
20
+ To use this model with the Sentence Transformers library:
 
 
21
 
 
22
  ```python
23
  from sentence_transformers import SentenceTransformer
24
 
25
  # Download from the 🤗 Hub
26
  model = SentenceTransformer("sujet-ai/Marsilia-Embedding-EN-Large")
27
+
28
  # Run inference
29
  sentences = [
30
  'What are the advantages and disadvantages of investing in corporate bonds compared to government bonds?',
 
41
  # [3, 3]
42
  ```
43
 
44
+ ## Intended Use 🎯
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
+ This model is designed for generating sentence embeddings for English text, particularly in the financial domain. It can be used for various natural language processing tasks such as semantic search, clustering, and information retrieval.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
+ ## Training Data 📚
 
49
 
50
+ The model was fine-tuned on the [sujet-ai/Sujet-Financial-RAG-EN-Dataset](https://huggingface.co/datasets/sujet-ai/Sujet-Financial-RAG-EN-Dataset). This dataset consists of question-context pairs in English, focusing on financial topics.
 
51
 
52
+ ## Training Procedure 🛠️
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
  ### Training Hyperparameters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
+ - **Loss Function:** MultipleNegativesRankingLoss
57
+ - Scale: 20.0
58
+ - Similarity Function: Cosine Similarity
59
+ - **Evaluation Strategy:** Steps
60
+ - **Per Device Train Batch Size:** 64
61
+ - **Per Device Eval Batch Size:** 64
62
+ - **Number of Train Epochs:** 10
63
+ - **Batch Sampler:** no_duplicates
64
+ - **Multi Dataset Batch Sampler:** round_robin
65
+ - **Scheduler:** Warmup cosine
66
 
67
  ### Framework Versions
68
+
69
  - Python: 3.10.13
70
  - Sentence Transformers: 3.0.1
71
  - Transformers: 4.42.3
 
74
  - Datasets: 2.20.0
75
  - Tokenizers: 0.19.1
76
 
77
+ ## Evaluation 📈
78
 
79
+ The model was evaluated using the `InformationRetrievalEvaluator` on the test split of the [sujet-ai/Sujet-Financial-RAG-EN-Dataset](https://huggingface.co/datasets/sujet-ai/Sujet-Financial-RAG-EN-Dataset).
80
 
81
+ ## Limitations ⚠️
 
 
 
 
 
 
 
 
 
 
 
82
 
83
+ The model is specifically trained on English financial texts and may not perform optimally on other domains or languages. Users should be aware of potential biases present in the training data.
 
 
 
 
 
 
 
 
 
 
 
 
 
84
 
85
+ ## Citation 📄
 
86
 
87
+ If you use this model in your research or applications, please cite:
 
88
 
89
+ ```bibtex
90
+ @software{Marsilia-Embeddings-EN-Large,
91
+ author = {Sujet AI, Allaa Boutaleb, Hamed Rahimi},
92
+ title = {Marsilia-Embeddings-EN-Large: A fine-tuned English embedding model for financial texts},
93
+ year = {2024},
94
+ url = {https://huggingface.co/sujet-ai/Marsilia-Embedding-EN-Large}
95
+ }
96
+ ```
97
 
98
+ ## Contact Information 📧
 
99
 
100
+ For questions, feedback, or collaborations, please reach out to us on [LinkedIn](https://www.linkedin.com/company/sujet-ai/) or visit our website [https://sujet.ai](https://sujet.ai).