File size: 1,912 Bytes
dd33121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
datasets:
- voxpopuli
model-index:
- name: speecht5_finetuned_voxpopuli_nl
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_finetuned_voxpopuli_nl

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4817

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7685        | 0.43  | 100  | 0.6720          |
| 0.7072        | 0.86  | 200  | 0.6247          |
| 0.6094        | 1.29  | 300  | 0.5385          |
| 0.5648        | 1.72  | 400  | 0.5098          |
| 0.5602        | 2.15  | 500  | 0.5003          |
| 0.5337        | 2.58  | 600  | 0.4931          |
| 0.5357        | 3.01  | 700  | 0.4881          |
| 0.5315        | 3.44  | 800  | 0.4841          |
| 0.5248        | 3.87  | 900  | 0.4828          |
| 0.5281        | 4.3   | 1000 | 0.4817          |


### Framework versions

- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3