sumyahhh commited on
Commit
3152049
·
1 Parent(s): f921e0f

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -136.15 +/- 52.76
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f46706e3490>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f46706e3520>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f46706e35b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f46706e3640>", "_build": "<function ActorCriticPolicy._build at 0x7f46706e36d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f46706e3760>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f46706e37f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f46706e3880>", "_predict": "<function ActorCriticPolicy._predict at 0x7f46706e3910>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f46706e39a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f46706e3a30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f46706e3ac0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f46706d2d80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687706822801845232, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2VkTyS7K8/1c8aP4I0Eb8tsMu8Yhs5vgAAAAAAAAAAOrIevrp0kD8mNRa/7LUwvyE7Pj5op6E9AAAAAAAAAACdUl++uH+uPlyJB74T00u/HVEzvagN+z0AAAAAAAAAAF5RDD/kKEQ+CyLlPnkOgL+xHpc+LpXGPQAAAAAAAAAAZpCIPuYXtz6fVhC9QFFkv2VvpT7OOxg9AAAAAAAAAABNyTk+dqS1PxNL+T5ikZm+C9GpvRYO2T0AAAAAAAAAAGC3Pj4i/54/49bWPgNB2r6hdmI+iB9yPgAAAAAAAAAAhmw/vrGbQD/7IYi+HOA1v9nrmz1L6OK8AAAAAAAAAACNQ5u9bQJIP6o10L1JrYG/ZsSTvnC+Gj0AAAAAAAAAAEqgkj70Zbg/8pfnPrsh6r5bsTU9BhYYPgAAAAAAAAAAzXq/PLarsT9+5Eg/D966vqjH5ryPDi++AAAAAAAAAADjW7Q+ukpLP3U3zz4PeGW/FMSnO4f4Qz0AAAAAAAAAAKZ/3D1Hc6M/QdgWPwbYxr5t5XW9kOCJvQAAAAAAAAAAzexVPcJ4LT/5BxK8L752v2PiHj4Gqwi+AAAAAAAAAAAza1G8IRaaPzxbtb2UmyC/CaibPUBPgT4AAAAAAAAAAOAYQj6M5Io/ypiMPrm5G7/eRuo9Kq38PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEmURkEs8PqMAWyUS0KMAXSUR0BZJsNQTEiudX2UKGgGR8BFNRQ79ycTaAdLXWgIR0BZKQCKaXrudX2UKGgGR8BTU/qcEvCeaAdLU2gIR0BZKOXiR4hVdX2UKGgGR8Bw8GEvkBCEaAdLYmgIR0BZLt3bEgnudX2UKGgGR8BGo3JYDDCQaAdLR2gIR0BZLzj3mFJydX2UKGgGR8BPq1qN6w+uaAdLcmgIR0BZMJZjhDPXdX2UKGgGR8A++k5p8F6iaAdLbWgIR0BZNGTLW7OFdX2UKGgGR8Ag/uO0b961aAdLkWgIR0BZNN0q6OHWdX2UKGgGR8BTKPc32mHhaAdLVWgIR0BZOCZKFqSHdX2UKGgGR0A15vRZ2ZAqaAdLbWgIR0BZOaoIfKZEdX2UKGgGR8BTP3sTnJT3aAdLbGgIR0BZOicXm/34dX2UKGgGR8AU089wFTvRaAdLW2gIR0BZO1eSjgyedX2UKGgGR8BCrXBHkLhKaAdLWWgIR0BZO4MKCxu9dX2UKGgGR8BBjv6j3225aAdLbmgIR0BZPRk3CKrJdX2UKGgGR8BRw/lhgE2YaAdLX2gIR0BZPXsPatcOdX2UKGgGR8BQaiThYNiIaAdLcGgIR0BZPtqtYB/7dX2UKGgGR8BQQRr8BMi9aAdLV2gIR0BZQBfjS5RTdX2UKGgGR8BCgxLK3d9EaAdLTmgIR0BZQ7X18LKFdX2UKGgGR8BPx3bdrO7haAdLbGgIR0BZRXsw+MZQdX2UKGgGR8BHbYBV+7UYaAdLf2gIR0BZSBRIjGDMdX2UKGgGR8A5w1rIo3JgaAdLSmgIR0BZSym2sq8UdX2UKGgGR0AGChtcfNiZaAdLYWgIR0BZTcUVSGahdX2UKGgGR8BWJ686FM7EaAdLb2gIR0BZTeo1k1/EdX2UKGgGR8BVjDPfKp1iaAdLWmgIR0BZUme18b71dX2UKGgGR8BilIAbQ1JlaAdLc2gIR0BZUxjOLR8ddX2UKGgGR8BYO3VLBbfQaAdLj2gIR0BZVSuEEkjYdX2UKGgGR8A2YPaL4vexaAdLV2gIR0BZVXD3ueBhdX2UKGgGR8BKGVNpM6BAaAdLU2gIR0BZVcW43FUAdX2UKGgGR8BkAOHnEETyaAdLYmgIR0BZVslHBk7PdX2UKGgGR8BMhbr9l2/0aAdLbWgIR0BZWVrl/6O6dX2UKGgGR8BIQk1uR9w4aAdLdGgIR0BZWaHO8kD7dX2UKGgGR8Bk4nlyR0U5aAdLfmgIR0BZWvRJEpiJdX2UKGgGR8BPGLrPdEb6aAdLVWgIR0BZXpO8CgbqdX2UKGgGR8BQL+p0fYBeaAdLcmgIR0BZZBSYPXkHdX2UKGgGR8BZsZsKsuFpaAdLoGgIR0BZZAMhHLA6dX2UKGgGR8BSCNmxt52RaAdLfGgIR0BZZPN3W4EwdX2UKGgGR8BS4V72L5ymaAdLXmgIR0BZZLh3qzJIdX2UKGgGR8A8/e3x4IKMaAdLQGgIR0BZZ/5tWMjvdX2UKGgGR8AvOTr3TNMXaAdLcWgIR0BZa/sNUfgadX2UKGgGR8BXE8xXXAdoaAdLZ2gIR0BZbp+UhV2idX2UKGgGR8Azx4hUzbeuaAdLf2gIR0BZb/kaMrEtdX2UKGgGR8BSAFiKBNEgaAdLVWgIR0BZcFqFh5PedX2UKGgGR8BO+NxdY4hmaAdLaWgIR0BZciydFvycdX2UKGgGR8BUqgOWjXWfaAdLXmgIR0BZcukP+XJHdX2UKGgGR8BatcVclgMMaAdLb2gIR0BZc1Li++M7dX2UKGgGR8Bb1SwwCbMHaAdLU2gIR0BZdVcMVk+YdX2UKGgGR8BA9olD4QBgaAdLeGgIR0BZdfTspobodX2UKGgGR8Axr1YhdMTOaAdLhWgIR0BZdnF1jiGWdX2UKGgGR8BEUJCKJl8PaAdLgWgIR0BZfUFW4mTldX2UKGgGR8BSlbPD50r9aAdLZ2gIR0BZf7YkE9t/dX2UKGgGR8BNPK6nR9gGaAdLcGgIR0BZgXObAk9mdX2UKGgGR8BDhjU3GXHBaAdLZWgIR0BZgrXHzYmLdX2UKGgGR8A2q3d9Dx9YaAdLTGgIR0BZguCXhOxjdX2UKGgGR7+iaJAMUh3aaAdLfGgIR0BZhblq8DjjdX2UKGgGR8BW21JL/S6UaAdLhWgIR0BZh2BWgezVdX2UKGgGR8BDSiBf8dgfaAdLTmgIR0BZikvoNd7fdX2UKGgGR8BJ/PXsgMc7aAdLYWgIR0BZi7LdN34cdX2UKGgGR8BXWYS6DoQnaAdLY2gIR0BZjOfqX4TLdX2UKGgGR8BHVeHi3ocJaAdLgGgIR0BZjksjFAE/dX2UKGgGR8BTjsjFAE+xaAdLZGgIR0BZj5E2Hck/dX2UKGgGR8BNfMEq2BrfaAdLe2gIR0BZkYSg5BC2dX2UKGgGR8BR42pVCHARaAdLgGgIR0BZkoQ8OkLydX2UKGgGR8BKFldszl90aAdLg2gIR0BZlh/d69kCdX2UKGgGR8BEekMLF4s3aAdLeGgIR0BZlmITGo73dX2UKGgGR8AmTPXTVlPKaAdLXGgIR0BZmKTbFjusdX2UKGgGR8BS9CKJl8PXaAdLYGgIR0BZnH1anrIHdX2UKGgGR8BT3c14xDb8aAdLP2gIR0BZnysfaHsUdX2UKGgGR8A+VNwR5C4SaAdLW2gIR0BZn7u6VdHEdX2UKGgGR8BSGIfW+XZ5aAdLf2gIR0BZn4zrNW2gdX2UKGgGR8BUSriuMdcTaAdLcGgIR0BZpErf+CK8dX2UKGgGR8BMuIzFdcB2aAdLfWgIR0BZpRUm2LHddX2UKGgGR8BRgpgPVd5ZaAdLg2gIR0BZpXPiT+vRdX2UKGgGR8BXy7Lt/nW8aAdLRmgIR0BZpczAN5MUdX2UKGgGR8BVxCw0O3DvaAdLaWgIR0BZqg/cFhXsdX2UKGgGR8BuduRq46OpaAdLeWgIR0BZrRMJx//edX2UKGgGR8BfAHztkWhzaAdLbmgIR0BZrfio86mwdX2UKGgGR0AhT+ZPVNHpaAdLWmgIR0BZrvPcBU70dX2UKGgGR8BK9nrpqynlaAdLl2gIR0BZs6IrOJLvdX2UKGgGR8BRo+SbH6uXaAdLfGgIR0BZs1NYbKigdX2UKGgGR8BbQH5FgDzRaAdLdWgIR0BZtm7Wd3B6dX2UKGgGR8BOCPovBacJaAdLXGgIR0BZuQmNR3vAdX2UKGgGR8BCGWDxsl9jaAdLUmgIR0BZu2uDBdledX2UKGgGR8BNKKZc9nscaAdLeWgIR0BZvgsbvPTodX2UKGgGR8BOqNtqHoHLaAdLd2gIR0BZwTAaef7KdX2UKGgGR8AyJfRNRFZxaAdLkGgIR0BZwMan752ydX2UKGgGR8BDggood+5OaAdLe2gIR0BZwdK7I1cddX2UKGgGR8BarLC79Q40aAdLbGgIR0BZw4UzsQd0dX2UKGgGR8Bee7dWQwK0aAdLdGgIR0BZxIOx0MgEdX2UKGgGR8BCfkB0ZFXraAdLVGgIR0BZxT+aScLCdX2UKGgGR8BPvDtoi9qUaAdLfWgIR0BZx9+1Bt1qdX2UKGgGR8BZ5tugpSaWaAdLSGgIR0BZx3UUfxMGdX2UKGgGR8BXklbaAWi2aAdLYmgIR0BZyC2x6fJ4dX2UKGgGR8BQ0l9Sde6aaAdLTGgIR0BZyN7BwdbQdX2UKGgGR8BOqmhdt2s8aAdLR2gIR0BZzs8HObAldX2UKGgGR8BSZLcbiqACaAdLiWgIR0BZzyILw4KhdX2UKGgGR8A+WRArxy4naAdLf2gIR0BZ0WqtHQQddX2UKGgGR8BRQmVRk3CLaAdLW2gIR0BZ0dNi6QNkdX2UKGgGR8BHZBlUZNwjaAdLa2gIR0BZ01bFCLMtdX2UKGgGR8BTVNwaR6njaAdLSGgIR0BZ16oIfKZEdX2UKGgGR8BioX27FsHjaAdLU2gIR0BZ10EkjX4CdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 32, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:644401efecbe2374dbb30e401f45f8fc866966b16ea18eca0d51728785f1edff
3
+ size 146618
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f46706e3490>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f46706e3520>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f46706e35b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f46706e3640>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f46706e36d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f46706e3760>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f46706e37f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f46706e3880>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f46706e3910>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f46706e39a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f46706e3a30>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f46706e3ac0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f46706d2d80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 114688,
25
+ "_total_timesteps": 100000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1687706822801845232,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2VkTyS7K8/1c8aP4I0Eb8tsMu8Yhs5vgAAAAAAAAAAOrIevrp0kD8mNRa/7LUwvyE7Pj5op6E9AAAAAAAAAACdUl++uH+uPlyJB74T00u/HVEzvagN+z0AAAAAAAAAAF5RDD/kKEQ+CyLlPnkOgL+xHpc+LpXGPQAAAAAAAAAAZpCIPuYXtz6fVhC9QFFkv2VvpT7OOxg9AAAAAAAAAABNyTk+dqS1PxNL+T5ikZm+C9GpvRYO2T0AAAAAAAAAAGC3Pj4i/54/49bWPgNB2r6hdmI+iB9yPgAAAAAAAAAAhmw/vrGbQD/7IYi+HOA1v9nrmz1L6OK8AAAAAAAAAACNQ5u9bQJIP6o10L1JrYG/ZsSTvnC+Gj0AAAAAAAAAAEqgkj70Zbg/8pfnPrsh6r5bsTU9BhYYPgAAAAAAAAAAzXq/PLarsT9+5Eg/D966vqjH5ryPDi++AAAAAAAAAADjW7Q+ukpLP3U3zz4PeGW/FMSnO4f4Qz0AAAAAAAAAAKZ/3D1Hc6M/QdgWPwbYxr5t5XW9kOCJvQAAAAAAAAAAzexVPcJ4LT/5BxK8L752v2PiHj4Gqwi+AAAAAAAAAAAza1G8IRaaPzxbtb2UmyC/CaibPUBPgT4AAAAAAAAAAOAYQj6M5Io/ypiMPrm5G7/eRuo9Kq38PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.1468799999999999,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEmURkEs8PqMAWyUS0KMAXSUR0BZJsNQTEiudX2UKGgGR8BFNRQ79ycTaAdLXWgIR0BZKQCKaXrudX2UKGgGR8BTU/qcEvCeaAdLU2gIR0BZKOXiR4hVdX2UKGgGR8Bw8GEvkBCEaAdLYmgIR0BZLt3bEgnudX2UKGgGR8BGo3JYDDCQaAdLR2gIR0BZLzj3mFJydX2UKGgGR8BPq1qN6w+uaAdLcmgIR0BZMJZjhDPXdX2UKGgGR8A++k5p8F6iaAdLbWgIR0BZNGTLW7OFdX2UKGgGR8Ag/uO0b961aAdLkWgIR0BZNN0q6OHWdX2UKGgGR8BTKPc32mHhaAdLVWgIR0BZOCZKFqSHdX2UKGgGR0A15vRZ2ZAqaAdLbWgIR0BZOaoIfKZEdX2UKGgGR8BTP3sTnJT3aAdLbGgIR0BZOicXm/34dX2UKGgGR8AU089wFTvRaAdLW2gIR0BZO1eSjgyedX2UKGgGR8BCrXBHkLhKaAdLWWgIR0BZO4MKCxu9dX2UKGgGR8BBjv6j3225aAdLbmgIR0BZPRk3CKrJdX2UKGgGR8BRw/lhgE2YaAdLX2gIR0BZPXsPatcOdX2UKGgGR8BQaiThYNiIaAdLcGgIR0BZPtqtYB/7dX2UKGgGR8BQQRr8BMi9aAdLV2gIR0BZQBfjS5RTdX2UKGgGR8BCgxLK3d9EaAdLTmgIR0BZQ7X18LKFdX2UKGgGR8BPx3bdrO7haAdLbGgIR0BZRXsw+MZQdX2UKGgGR8BHbYBV+7UYaAdLf2gIR0BZSBRIjGDMdX2UKGgGR8A5w1rIo3JgaAdLSmgIR0BZSym2sq8UdX2UKGgGR0AGChtcfNiZaAdLYWgIR0BZTcUVSGahdX2UKGgGR8BWJ686FM7EaAdLb2gIR0BZTeo1k1/EdX2UKGgGR8BVjDPfKp1iaAdLWmgIR0BZUme18b71dX2UKGgGR8BilIAbQ1JlaAdLc2gIR0BZUxjOLR8ddX2UKGgGR8BYO3VLBbfQaAdLj2gIR0BZVSuEEkjYdX2UKGgGR8A2YPaL4vexaAdLV2gIR0BZVXD3ueBhdX2UKGgGR8BKGVNpM6BAaAdLU2gIR0BZVcW43FUAdX2UKGgGR8BkAOHnEETyaAdLYmgIR0BZVslHBk7PdX2UKGgGR8BMhbr9l2/0aAdLbWgIR0BZWVrl/6O6dX2UKGgGR8BIQk1uR9w4aAdLdGgIR0BZWaHO8kD7dX2UKGgGR8Bk4nlyR0U5aAdLfmgIR0BZWvRJEpiJdX2UKGgGR8BPGLrPdEb6aAdLVWgIR0BZXpO8CgbqdX2UKGgGR8BQL+p0fYBeaAdLcmgIR0BZZBSYPXkHdX2UKGgGR8BZsZsKsuFpaAdLoGgIR0BZZAMhHLA6dX2UKGgGR8BSCNmxt52RaAdLfGgIR0BZZPN3W4EwdX2UKGgGR8BS4V72L5ymaAdLXmgIR0BZZLh3qzJIdX2UKGgGR8A8/e3x4IKMaAdLQGgIR0BZZ/5tWMjvdX2UKGgGR8AvOTr3TNMXaAdLcWgIR0BZa/sNUfgadX2UKGgGR8BXE8xXXAdoaAdLZ2gIR0BZbp+UhV2idX2UKGgGR8Azx4hUzbeuaAdLf2gIR0BZb/kaMrEtdX2UKGgGR8BSAFiKBNEgaAdLVWgIR0BZcFqFh5PedX2UKGgGR8BO+NxdY4hmaAdLaWgIR0BZciydFvycdX2UKGgGR8BUqgOWjXWfaAdLXmgIR0BZcukP+XJHdX2UKGgGR8BatcVclgMMaAdLb2gIR0BZc1Li++M7dX2UKGgGR8Bb1SwwCbMHaAdLU2gIR0BZdVcMVk+YdX2UKGgGR8BA9olD4QBgaAdLeGgIR0BZdfTspobodX2UKGgGR8Axr1YhdMTOaAdLhWgIR0BZdnF1jiGWdX2UKGgGR8BEUJCKJl8PaAdLgWgIR0BZfUFW4mTldX2UKGgGR8BSlbPD50r9aAdLZ2gIR0BZf7YkE9t/dX2UKGgGR8BNPK6nR9gGaAdLcGgIR0BZgXObAk9mdX2UKGgGR8BDhjU3GXHBaAdLZWgIR0BZgrXHzYmLdX2UKGgGR8A2q3d9Dx9YaAdLTGgIR0BZguCXhOxjdX2UKGgGR7+iaJAMUh3aaAdLfGgIR0BZhblq8DjjdX2UKGgGR8BW21JL/S6UaAdLhWgIR0BZh2BWgezVdX2UKGgGR8BDSiBf8dgfaAdLTmgIR0BZikvoNd7fdX2UKGgGR8BJ/PXsgMc7aAdLYWgIR0BZi7LdN34cdX2UKGgGR8BXWYS6DoQnaAdLY2gIR0BZjOfqX4TLdX2UKGgGR8BHVeHi3ocJaAdLgGgIR0BZjksjFAE/dX2UKGgGR8BTjsjFAE+xaAdLZGgIR0BZj5E2Hck/dX2UKGgGR8BNfMEq2BrfaAdLe2gIR0BZkYSg5BC2dX2UKGgGR8BR42pVCHARaAdLgGgIR0BZkoQ8OkLydX2UKGgGR8BKFldszl90aAdLg2gIR0BZlh/d69kCdX2UKGgGR8BEekMLF4s3aAdLeGgIR0BZlmITGo73dX2UKGgGR8AmTPXTVlPKaAdLXGgIR0BZmKTbFjusdX2UKGgGR8BS9CKJl8PXaAdLYGgIR0BZnH1anrIHdX2UKGgGR8BT3c14xDb8aAdLP2gIR0BZnysfaHsUdX2UKGgGR8A+VNwR5C4SaAdLW2gIR0BZn7u6VdHEdX2UKGgGR8BSGIfW+XZ5aAdLf2gIR0BZn4zrNW2gdX2UKGgGR8BUSriuMdcTaAdLcGgIR0BZpErf+CK8dX2UKGgGR8BMuIzFdcB2aAdLfWgIR0BZpRUm2LHddX2UKGgGR8BRgpgPVd5ZaAdLg2gIR0BZpXPiT+vRdX2UKGgGR8BXy7Lt/nW8aAdLRmgIR0BZpczAN5MUdX2UKGgGR8BVxCw0O3DvaAdLaWgIR0BZqg/cFhXsdX2UKGgGR8BuduRq46OpaAdLeWgIR0BZrRMJx//edX2UKGgGR8BfAHztkWhzaAdLbmgIR0BZrfio86mwdX2UKGgGR0AhT+ZPVNHpaAdLWmgIR0BZrvPcBU70dX2UKGgGR8BK9nrpqynlaAdLl2gIR0BZs6IrOJLvdX2UKGgGR8BRo+SbH6uXaAdLfGgIR0BZs1NYbKigdX2UKGgGR8BbQH5FgDzRaAdLdWgIR0BZtm7Wd3B6dX2UKGgGR8BOCPovBacJaAdLXGgIR0BZuQmNR3vAdX2UKGgGR8BCGWDxsl9jaAdLUmgIR0BZu2uDBdledX2UKGgGR8BNKKZc9nscaAdLeWgIR0BZvgsbvPTodX2UKGgGR8BOqNtqHoHLaAdLd2gIR0BZwTAaef7KdX2UKGgGR8AyJfRNRFZxaAdLkGgIR0BZwMan752ydX2UKGgGR8BDggood+5OaAdLe2gIR0BZwdK7I1cddX2UKGgGR8BarLC79Q40aAdLbGgIR0BZw4UzsQd0dX2UKGgGR8Bee7dWQwK0aAdLdGgIR0BZxIOx0MgEdX2UKGgGR8BCfkB0ZFXraAdLVGgIR0BZxT+aScLCdX2UKGgGR8BPvDtoi9qUaAdLfWgIR0BZx9+1Bt1qdX2UKGgGR8BZ5tugpSaWaAdLSGgIR0BZx3UUfxMGdX2UKGgGR8BXklbaAWi2aAdLYmgIR0BZyC2x6fJ4dX2UKGgGR8BQ0l9Sde6aaAdLTGgIR0BZyN7BwdbQdX2UKGgGR8BOqmhdt2s8aAdLR2gIR0BZzs8HObAldX2UKGgGR8BSZLcbiqACaAdLiWgIR0BZzyILw4KhdX2UKGgGR8A+WRArxy4naAdLf2gIR0BZ0WqtHQQddX2UKGgGR8BRQmVRk3CLaAdLW2gIR0BZ0dNi6QNkdX2UKGgGR8BHZBlUZNwjaAdLa2gIR0BZ01bFCLMtdX2UKGgGR8BTVNwaR6njaAdLSGgIR0BZ16oIfKZEdX2UKGgGR8BioX27FsHjaAdLU2gIR0BZ10EkjX4CdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 32,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb3225830d3c44b75696bf9558e5f56fa3329bd262e0fcde323f6128c4167e5e
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6880d781b27ea94f1f2ae971dee62f5b3a48a2a28f55f6190e5c47d0cb08ba28
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (202 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -136.1505519987375, "std_reward": 52.75866303273983, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-25T15:31:05.877748"}