File size: 6,563 Bytes
c8e2afa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
license: apache-2.0
---
**Transformer_translation**
```
import torch
import warnings
warnings.filterwarnings("ignore")      
import torch
import torch.nn as nn
import math
from transformers import MarianTokenizer
from datasets import load_dataset
from typing import List
from torch import Tensor
from torch.nn import Transformer
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset
from timeit import default_timer as timer
import urllib.request
import os
from torch.cuda.amp import GradScaler, autocast
import logging


tokenizer = MarianTokenizer.from_pretrained('Helsinki-NLP/opus-mt-de-en')

# 定义特殊token的索引
PAD_IDX = tokenizer.pad_token_id
BOS_IDX = tokenizer.bos_token_id if tokenizer.bos_token_id is not None else 1
EOS_IDX = tokenizer.eos_token_id
UNK_IDX = tokenizer.unk_token_id

class PositionalEncoding(nn.Module):
    def __init__(self, emb_size: int, dropout: float, maxlen: int = 5000):
        super(PositionalEncoding, self).__init__()
        den = torch.exp(-torch.arange(0, emb_size, 2) * math.log(10000) / emb_size)
        pos = torch.arange(0, maxlen).reshape(maxlen, 1)
        pos_embedding = torch.zeros((maxlen, emb_size))
        pos_embedding[:, 0::2] = torch.sin(pos * den)
        pos_embedding[:, 1::2] = torch.cos(pos * den)
        pos_embedding = pos_embedding.unsqueeze(-2)
        self.dropout = nn.Dropout(dropout)
        self.register_buffer('pos_embedding', pos_embedding)

    def forward(self, token_embedding: Tensor):
        return self.dropout(token_embedding + self.pos_embedding[:token_embedding.size(0), :])

class TokenEmbedding(nn.Module):
    def __init__(self, vocab_size: int, emb_size):
        super(TokenEmbedding, self).__init__()
        self.embedding = nn.Embedding(vocab_size, emb_size)
        self.emb_size = emb_size

    def forward(self, tokens: Tensor):
        return self.embedding(tokens.long()) * math.sqrt(self.emb_size)

class Seq2SeqTransformer(nn.Module):
    def __init__(self, num_encoder_layers: int, num_decoder_layers: int,
                 emb_size: int, nhead: int, src_vocab_size: int,
                 tgt_vocab_size: int, dim_feedforward: int = 512, dropout: float = 0.1):
        super(Seq2SeqTransformer, self).__init__()
        self.transformer = Transformer(d_model=emb_size,
                                    nhead=nhead,
                                    num_encoder_layers=num_encoder_layers,
                                    num_decoder_layers=num_decoder_layers,
                                    dim_feedforward=dim_feedforward,
                                    dropout=dropout)
        self.generator = nn.Linear(emb_size, tgt_vocab_size)
        self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size)
        self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size)
        self.positional_encoding = PositionalEncoding(emb_size, dropout=dropout)

    def forward(self, src: Tensor, trg: Tensor, src_mask: Tensor,
                tgt_mask: Tensor, src_padding_mask: Tensor,
                tgt_padding_mask: Tensor, memory_key_padding_mask: Tensor):
        src_emb = self.positional_encoding(self.src_tok_emb(src))
        tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))
        outs = self.transformer(src_emb, tgt_emb, src_mask, tgt_mask, None,
                              src_padding_mask, tgt_padding_mask, memory_key_padding_mask)
        return self.generator(outs)

    def encode(self, src: Tensor, src_mask: Tensor):
        return self.transformer.encoder(self.positional_encoding(self.src_tok_emb(src)), src_mask)

    def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor):
        return self.transformer.decoder(self.positional_encoding(self.tgt_tok_emb(tgt)), memory, tgt_mask)

def generate_square_subsequent_mask(sz):
    mask = (torch.triu(torch.ones((sz, sz), device=DEVICE)) == 1).transpose(0, 1)
    mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
    return mask

def create_mask(src, tgt):
    src_seq_len = src.shape[0]
    tgt_seq_len = tgt.shape[0]

    tgt_mask = generate_square_subsequent_mask(tgt_seq_len)
    src_mask = torch.zeros((src_seq_len, src_seq_len), device=DEVICE).type(torch.bool)

    src_padding_mask = (src == PAD_IDX).transpose(0, 1)
    tgt_padding_mask = (tgt == PAD_IDX).transpose(0, 1)
    return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask


def greedy_decode(model, src, src_mask, max_len, start_symbol):
    src = src.to(DEVICE)
    src_mask = src_mask.to(DEVICE)
    
    memory = model.encode(src, src_mask)
    ys = torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(DEVICE)
    
    for i in range(max_len-1):
        memory = memory.to(DEVICE)
        tgt_mask = (generate_square_subsequent_mask(ys.size(0))
                   .type(torch.bool)).to(DEVICE)
        out = model.decode(ys, memory, tgt_mask)
        out = out.transpose(0, 1)
        prob = model.generator(out[:, -1])
        _, next_word = torch.max(prob, dim=1)
        next_word = next_word.item()
        
        ys = torch.cat([ys, torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=0)
        if next_word == EOS_IDX:
            break
    return ys

def translate(model: torch.nn.Module, src_sentence: str):
    model.eval()
    tokens = tokenizer(src_sentence, return_tensors='pt', padding=True)
    src = tokens['input_ids'].transpose(0, 1).to(DEVICE)
    src_mask = (torch.zeros(src.shape[0], src.shape[0])).type(torch.bool).to(DEVICE)
    
    tgt_tokens = greedy_decode(model, src, src_mask, max_len=src.shape[0] + 5, start_symbol=BOS_IDX).flatten()
    return tokenizer.decode(tgt_tokens.tolist(), skip_special_tokens=True)


BATCH_SIZE = 32        # 减小批次大小,原来是64
EMB_SIZE = 512        # 保持不变
NHEAD = 8            # 保持不变
FFN_HID_DIM = 512    # 改回512,原来改成了1024
NUM_ENCODER_LAYERS = 3  # 改回3,原来改成了4
NUM_DECODER_LAYERS = 3  # 改回3,原来改成了4
NUM_EPOCHS = 18        # 保持不变
SRC_VOCAB_SIZE = tokenizer.vocab_size
TGT_VOCAB_SIZE = tokenizer.vocab_size
DEVICE = 'cuda'

transformer = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE,
                               NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM)
transformer.load_state_dict(torch.load('./transformer_translation.pth')) 
transformer = transformer.to(DEVICE)
print('开始翻译...')
print(translate(transformer, "Eine Gruppe von Freunden spielt Billiade."))
print('翻译完成!!')
```