File size: 13,633 Bytes
474a5df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import warnings
warnings.filterwarnings("ignore")      
import torch
import torch.nn as nn
import math
from transformers import MarianTokenizer
from datasets import load_dataset
from typing import List
from torch import Tensor
from torch.nn import Transformer
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset
from timeit import default_timer as timer
import urllib.request
import os
from torch.cuda.amp import GradScaler, autocast
import logging

logging.getLogger("datasets").setLevel(logging.ERROR)   

print("CUDA是否可用:", torch.cuda.is_available())
print("PyTorch版本:", torch.__version__)
if torch.cuda.is_available():
    print("CUDA版本:", torch.version.cuda)

# 设置设备
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("当前使用设备:", DEVICE)
if torch.cuda.is_available():
    print(f"GPU信息: {torch.cuda.get_device_name(0)}")
    print(f"当前GPU显存使用: {torch.cuda.memory_allocated(0)/1024**2:.2f} MB")

# 初始化tokenizer,MarianMT模型主要是通过其tokenizer(分词器)在发挥作用,而不是使��其预训练的翻译能力
tokenizer = MarianTokenizer.from_pretrained('Helsinki-NLP/opus-mt-de-en')

# 定义特殊token的索引
PAD_IDX = tokenizer.pad_token_id
BOS_IDX = tokenizer.bos_token_id
EOS_IDX = tokenizer.eos_token_id
UNK_IDX = tokenizer.unk_token_id

# 获取词汇表大小
SRC_VOCAB_SIZE = tokenizer.vocab_size
TGT_VOCAB_SIZE = tokenizer.vocab_size

class PositionalEncoding(nn.Module):
    def __init__(self, emb_size: int, dropout: float, maxlen: int = 5000):
        super(PositionalEncoding, self).__init__()
        den = torch.exp(-torch.arange(0, emb_size, 2) * math.log(10000) / emb_size)
        pos = torch.arange(0, maxlen).reshape(maxlen, 1)
        pos_embedding = torch.zeros((maxlen, emb_size))
        pos_embedding[:, 0::2] = torch.sin(pos * den)
        pos_embedding[:, 1::2] = torch.cos(pos * den)
        pos_embedding = pos_embedding.unsqueeze(-2)
        self.dropout = nn.Dropout(dropout)
        self.register_buffer('pos_embedding', pos_embedding)

    def forward(self, token_embedding: Tensor):
        return self.dropout(token_embedding + self.pos_embedding[:token_embedding.size(0), :])

class TokenEmbedding(nn.Module):
    def __init__(self, vocab_size: int, emb_size):
        super(TokenEmbedding, self).__init__()
        self.embedding = nn.Embedding(vocab_size, emb_size)
        self.emb_size = emb_size

    def forward(self, tokens: Tensor):
        return self.embedding(tokens.long()) * math.sqrt(self.emb_size)

class Seq2SeqTransformer(nn.Module):
    def __init__(self, num_encoder_layers: int, num_decoder_layers: int,
                 emb_size: int, nhead: int, src_vocab_size: int,
                 tgt_vocab_size: int, dim_feedforward: int = 512, dropout: float = 0.1):
        super(Seq2SeqTransformer, self).__init__()
        self.transformer = Transformer(d_model=emb_size,
                                    nhead=nhead,
                                    num_encoder_layers=num_encoder_layers,
                                    num_decoder_layers=num_decoder_layers,
                                    dim_feedforward=dim_feedforward,
                                    dropout=dropout)
        self.generator = nn.Linear(emb_size, tgt_vocab_size)
        self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size)
        self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size)
        self.positional_encoding = PositionalEncoding(emb_size, dropout=dropout)

    def forward(self, src: Tensor, trg: Tensor, src_mask: Tensor,
                tgt_mask: Tensor, src_padding_mask: Tensor,
                tgt_padding_mask: Tensor, memory_key_padding_mask: Tensor):
        src_emb = self.positional_encoding(self.src_tok_emb(src))
        tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))
        outs = self.transformer(src_emb, tgt_emb, src_mask, tgt_mask, None,
                              src_padding_mask, tgt_padding_mask, memory_key_padding_mask)
        return self.generator(outs)

    def encode(self, src: Tensor, src_mask: Tensor):
        return self.transformer.encoder(self.positional_encoding(self.src_tok_emb(src)), src_mask)

    def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor):
        return self.transformer.decoder(self.positional_encoding(self.tgt_tok_emb(tgt)), memory, tgt_mask)

def generate_square_subsequent_mask(sz):
    mask = (torch.triu(torch.ones((sz, sz), device=DEVICE)) == 1).transpose(0, 1)
    mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
    return mask

def create_mask(src, tgt):
    src_seq_len = src.shape[0]
    tgt_seq_len = tgt.shape[0]

    tgt_mask = generate_square_subsequent_mask(tgt_seq_len)
    src_mask = torch.zeros((src_seq_len, src_seq_len), device=DEVICE).type(torch.bool)

    src_padding_mask = (src == PAD_IDX).transpose(0, 1)
    tgt_padding_mask = (tgt == PAD_IDX).transpose(0, 1)
    return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask

def download_multi30k():
    base_url = "https://raw.githubusercontent.com/multi30k/dataset/master/data/task1/raw/"
    
    # 创建数据目录
    os.makedirs("multi30k", exist_ok=True)
    
    # 下载训练、验证和测试数据
    splits = ['train', 'val', 'test']
    languages = ['de', 'en']
    
    for split in splits:
        for lang in languages:
            filename = f"{split}.{lang}"
            url = f"{base_url}{filename}"
            path = f"multi30k/{filename}"
            
            if not os.path.exists(path):
                print(f"Downloading {filename}...")
                urllib.request.urlretrieve(url, path)

def load_data():
    # 加载WMT14数据集的德英对
    dataset = load_dataset("wmt14", "de-en", cache_dir=".cache")
    
    # 为了便于训练,我们只使用一部分数据
    train_size = 29000  # 与Multi30k训练集大小相近
    val_size = 1000
    test_size = 1000
    
    # 处理数据集
    data = {
        'train': {
            'de': [item['de'] for item in dataset['train']['translation'][:train_size]],
            'en': [item['en'] for item in dataset['train']['translation'][:train_size]]
        },
        'val': {
            'de': [item['de'] for item in dataset['validation']['translation'][:val_size]],
            'en': [item['en'] for item in dataset['validation']['translation'][:val_size]]
        },
        'test': {
            'de': [item['de'] for item in dataset['test']['translation'][:test_size]],
            'en': [item['en'] for item in dataset['test']['translation'][:test_size]]
        }
    }
    
    return data

# 添加一个自定义Dataset类
class TranslationDataset(Dataset):
    def __init__(self, de_texts, en_texts):
        self.de_texts = de_texts
        self.en_texts = en_texts
        
    def __len__(self):
        return len(self.de_texts)
    
    def __getitem__(self, idx):
        return {
            'de': self.de_texts[idx],
            'en': self.en_texts[idx]
        }

print("正在加载数据集...")
_cached_data = load_data()  # 全局缓存数据

def get_dataloader(split='train', batch_size=32):
    # 使用缓存的数据而不是重新加载
    data = _cached_data[split]
    
    # 创建Dataset对象
    dataset = TranslationDataset(data['de'], data['en'])
    
    return DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=(split == 'train')
    )

# 修改模型参数,减少显存使用
BATCH_SIZE = 32        # 减小批次大小,原来是64
EMB_SIZE = 512        # 保持不变
NHEAD = 8            # 保持不变
FFN_HID_DIM = 512    # 改回512,原来改成了1024
NUM_ENCODER_LAYERS = 3  # 改回3,原来改成了4
NUM_DECODER_LAYERS = 3  # 改回3,原来改成了4
NUM_EPOCHS = 18        # 保持不变

# 实例化模型
transformer = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE,
                               NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM)
transformer = transformer.to(DEVICE)

# 初始化参数
for p in transformer.parameters():
    if p.dim() > 1:
        nn.init.xavier_uniform_(p)

# 定义损失函数和优化器
loss_fn = nn.CrossEntropyLoss(ignore_index=PAD_IDX)
optimizer = torch.optim.Adam(transformer.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9)

# 创建梯度缩放器
scaler = GradScaler()

def train_epoch(model, optimizer):
    try:
        model.train()
        losses = 0
        train_dataloader = get_dataloader('train', BATCH_SIZE)
        
        for batch in train_dataloader:
            src_texts = batch['de']
            tgt_texts = batch['en']
            
            # 使用自动混合精度
            with autocast():
                src_tokens = tokenizer(src_texts, padding=True, return_tensors='pt')
                tgt_tokens = tokenizer(tgt_texts, padding=True, return_tensors='pt')
                
                src = src_tokens['input_ids'].transpose(0, 1).to(DEVICE)
                tgt = tgt_tokens['input_ids'].transpose(0, 1).to(DEVICE)
                
                tgt_input = tgt[:-1, :]
                src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input)
                
                logits = model(src, tgt_input, src_mask, tgt_mask,
                              src_padding_mask, tgt_padding_mask, src_padding_mask)
                
                tgt_out = tgt[1:, :]
                loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1))
            
            optimizer.zero_grad()
            scaler.scale(loss).backward()
            scaler.step(optimizer)
            scaler.update()
            losses += loss.item()
        
        return losses / len(train_dataloader)
    except KeyboardInterrupt:
        print("\n训练被手动中断!正在保存当前模型状态...")
        # 保存检查点
        checkpoint = {
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'epoch': epoch,  # 保存当前的epoch
            'train_loss': train_loss,
            'val_loss': val_loss
        }
        torch.save(checkpoint, 'transformer_translation.pth')
        print("模型检查点已保存到 transformer_translation.pth")
        raise KeyboardInterrupt

def evaluate(model):
    model.eval()
    losses = 0
    val_dataloader = get_dataloader('val', BATCH_SIZE)
    
    for batch in val_dataloader:
        src_texts = batch['de']
        tgt_texts = batch['en']
        
        src_tokens = tokenizer(src_texts, padding=True, return_tensors='pt')
        tgt_tokens = tokenizer(tgt_texts, padding=True, return_tensors='pt')
        
        src = src_tokens['input_ids'].transpose(0, 1).to(DEVICE)
        tgt = tgt_tokens['input_ids'].transpose(0, 1).to(DEVICE)
        
        tgt_input = tgt[:-1, :]
        src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input)
        
        logits = model(src, tgt_input, src_mask, tgt_mask,
                      src_padding_mask, tgt_padding_mask, src_padding_mask)
        
        tgt_out = tgt[1:, :]
        loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1))
        losses += loss.item()
        
    return losses / len(val_dataloader)

def greedy_decode(model, src, src_mask, max_len, start_symbol):
    src = src.to(DEVICE)
    src_mask = src_mask.to(DEVICE)
    
    memory = model.encode(src, src_mask)
    ys = torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(DEVICE)
    
    for i in range(max_len-1):
        memory = memory.to(DEVICE)
        tgt_mask = (generate_square_subsequent_mask(ys.size(0))
                   .type(torch.bool)).to(DEVICE)
        out = model.decode(ys, memory, tgt_mask)
        out = out.transpose(0, 1)
        prob = model.generator(out[:, -1])
        _, next_word = torch.max(prob, dim=1)
        next_word = next_word.item()
        
        ys = torch.cat([ys, torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=0)
        if next_word == EOS_IDX:
            break
    return ys

def translate(model: torch.nn.Module, src_sentence: str):
    model.eval()
    tokens = tokenizer(src_sentence, return_tensors='pt', padding=True)
    src = tokens['input_ids'].transpose(0, 1).to(DEVICE)
    src_mask = (torch.zeros(src.shape[0], src.shape[0])).type(torch.bool).to(DEVICE)
    
    tgt_tokens = greedy_decode(model, src, src_mask, max_len=src.shape[0] + 5, start_symbol=BOS_IDX).flatten()
    return tokenizer.decode(tgt_tokens.tolist(), skip_special_tokens=True)

# 在训练前添加显存清理
if torch.cuda.is_available():
    torch.cuda.empty_cache()



# 训练模型
for epoch in range(1, NUM_EPOCHS + 1):
    start_time = timer()
    train_loss = train_epoch(transformer, optimizer)
    end_time = timer()
    val_loss = evaluate(transformer)
    print(f"Epoch: {epoch}, Train loss: {train_loss:.3f}, Val loss: {val_loss:.3f}, "
          f"Epoch time = {(end_time - start_time):.3f}s")

# 保存模型
path = 'transformer_translation.pth'
torch.save(transformer.state_dict(), path)
print("模型保存成功!")

# 加载模型
transformer = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE,
                               NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM)
transformer.load_state_dict(torch.load(path))
transformer = transformer.to(DEVICE)
print("模型加载成功!")

# 测试翻译
print(translate(transformer, "Eine Gruppe von Freunden spielt Billiade."))