File size: 2,775 Bytes
208953f
 
dae9048
 
 
 
 
 
 
 
 
208953f
 
dae9048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-a-no-ag
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-a-no-ag

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0365
- Wer: 26.0523

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 132
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.7935        | 1.4317  | 100  | 0.1805          | 33.4471 |
| 0.164         | 2.8633  | 200  | 0.0531          | 18.6576 |
| 0.0556        | 4.2878  | 300  | 0.1691          | 21.3879 |
| 0.0531        | 5.7194  | 400  | 0.0423          | 26.6212 |
| 0.023         | 7.1439  | 500  | 0.1101          | 70.6485 |
| 0.027         | 8.5755  | 600  | 0.0749          | 25.3697 |
| 0.0092        | 10.0    | 700  | 0.0406          | 18.9989 |
| 0.0046        | 11.4317 | 800  | 0.0673          | 36.9738 |
| 0.0063        | 12.8633 | 900  | 0.0371          | 24.6871 |
| 0.0032        | 14.2878 | 1000 | 0.0428          | 27.1900 |
| 0.001         | 15.7194 | 1100 | 0.0536          | 27.3038 |
| 0.0001        | 17.1439 | 1200 | 0.0453          | 25.8248 |
| 0.0           | 18.5755 | 1300 | 0.0434          | 25.7110 |
| 0.0008        | 20.0    | 1400 | 0.0368          | 26.1661 |
| 0.0           | 21.4317 | 1500 | 0.0365          | 26.1661 |
| 0.0           | 22.8633 | 1600 | 0.0365          | 26.1661 |
| 0.0           | 24.2878 | 1700 | 0.0365          | 26.0523 |
| 0.0           | 25.7194 | 1800 | 0.0365          | 26.0523 |
| 0.0           | 27.1439 | 1900 | 0.0365          | 26.0523 |
| 0.0           | 28.5755 | 2000 | 0.0365          | 26.0523 |


### Framework versions

- Transformers 4.47.0.dev0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0