|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import torch |
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DiffusionPipeline, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
StableDiffusionPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers import DiffusionPipeline, StableDiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer |
|
|
|
pipe1_model_id = "CompVis/stable-diffusion-v1-1" |
|
pipe2_model_id = "CompVis/stable-diffusion-v1-2" |
|
pipe3_model_id = "CompVis/stable-diffusion-v1-3" |
|
pipe4_model_id = "CompVis/stable-diffusion-v1-4" |
|
|
|
|
|
class StableDiffusionComparisonPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for parallel comparison of Stable Diffusion v1-v4 |
|
This pipeline inherits from DiffusionPipeline and depends on the use of an Auth Token for |
|
downloading pre-trained checkpoints from Hugging Face Hub. |
|
Args: |
|
pipe1 ('StableDiffusionPipeline' or 'str', optional): |
|
A Stable Diffusion Pipeline prepared from the SD1.1 Checkpoints on Hugging Face Hub |
|
pipe2 ('StableDiffusionPipeline' or 'str', optional): |
|
A Stable Diffusion Pipeline prepared from the SD1.2 Checkpoints on Hugging Face Hub |
|
pipe3 ('StableDiffusionPipeline' or 'str', optional): |
|
A Stable Diffusion Pipeline prepared from the SD1.3 Checkpoints on Hugging Face Hub |
|
pipe4 ('StableDiffusionPipeline' or 'str', optional): |
|
A Stable Diffusion Pipeline prepared from the SD1.4 Checkpoints on Hugging Face Hub |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPFeatureExtractor, |
|
requires_safety_checker: bool = True, |
|
): |
|
super()._init_() |
|
|
|
self.pipe1 = StableDiffusionPipeline.from_pretrained(pipe1_model_id) |
|
self.pipe2 = StableDiffusionPipeline.from_pretrained(pipe2_model_id) |
|
self.pipe3 = StableDiffusionPipeline.from_pretrained(pipe3_model_id) |
|
self.pipe4 = StableDiffusionPipeline( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
requires_safety_checker=requires_safety_checker |
|
) |
|
|
|
self.register_modules(pipeline1=self.pipe1, pipeline2=self.pipe2, pipeline3=self.pipe3, pipeline4=self.pipe4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@property |
|
def layers(self) -> Dict[str, Any]: |
|
return {k: getattr(self, k) for k in self.config.keys() if not k.startswith("_")} |
|
|
|
@torch.no_grad() |
|
def text2img_sd1_1( |
|
self, |
|
prompt: Union[str, List[str]], |
|
height: int = 512, |
|
width: int = 512, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
**kwargs, |
|
): |
|
return self.pipe1( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
**kwargs, |
|
) |
|
|
|
@torch.no_grad() |
|
def text2img_sd1_2( |
|
self, |
|
prompt: Union[str, List[str]], |
|
height: int = 512, |
|
width: int = 512, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
**kwargs, |
|
): |
|
return self.pipe2( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
**kwargs, |
|
) |
|
|
|
@torch.no_grad() |
|
def text2img_sd1_3( |
|
self, |
|
prompt: Union[str, List[str]], |
|
height: int = 512, |
|
width: int = 512, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
**kwargs, |
|
): |
|
return self.pipe3( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
**kwargs, |
|
) |
|
|
|
@torch.no_grad() |
|
def text2img_sd1_4( |
|
self, |
|
prompt: Union[str, List[str]], |
|
height: int = 512, |
|
width: int = 512, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
**kwargs, |
|
): |
|
return self.pipe4( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
**kwargs, |
|
) |
|
|
|
@torch.no_grad() |
|
def _call_( |
|
self, |
|
prompt: Union[str, List[str]], |
|
height: int = 512, |
|
width: int = 512, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
**kwargs, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. This function will generate 4 results as part |
|
of running all the 4 pipelines for SD1.1-1.4 together in a serial-processing, parallel-invocation fashion. |
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
height (`int`, optional, defaults to 512): |
|
The height in pixels of the generated image. |
|
width (`int`, optional, defaults to 512): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, optional, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, optional, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
eta (`float`, optional, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, optional): |
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation |
|
deterministic. |
|
latents (`torch.FloatTensor`, optional): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, optional, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, optional, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
self.to(device) |
|
|
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}.") |
|
|
|
|
|
res1 = self.text2img_sd1_1( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
**kwargs, |
|
) |
|
|
|
|
|
res2 = self.text2img_sd1_2( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
**kwargs, |
|
) |
|
|
|
|
|
res3 = self.text2img_sd1_3( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
**kwargs, |
|
) |
|
|
|
|
|
res4 = self.text2img_sd1_4( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
**kwargs, |
|
) |
|
|
|
|
|
return StableDiffusionPipelineOutput([res1[0], res2[0], res3[0], res4[0]]) |
|
|