m-elio commited on
Commit
be0fca9
·
1 Parent(s): 30d71a4

update model card

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md CHANGED
@@ -1,3 +1,65 @@
1
  ---
2
  license: llama2
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: llama2
3
+ language:
4
+ - it
5
+ tags:
6
+ - text-generation-inference
7
  ---
8
+ # Model Card for LLaMAntino-2-7b-ITA
9
+
10
+ ## Model description
11
+
12
+ <!-- Provide a quick summary of what the model is/does. -->
13
+
14
+ **LLaMAntino-2-7b** is a *Large Language Model (LLM)* that is an italian-adapted **LLaMA 2**.
15
+ This model aims to provide Italian NLP researchers with a base model for natural language generation tasks.
16
+
17
+ The model was trained using *QLora* and using as training data [clean_mc4_it medium](https://huggingface.co/datasets/gsarti/clean_mc4_it/viewer/medium).
18
+ If you are interested in more details regarding the training procedure, you can find the code we used at the following link:
19
+ - **Repository:** https://github.com/swapUniba/LLaMAntino
20
+
21
+ **NOTICE**: the code has not been released yet, we apologize for the delay, it will be available asap!
22
+
23
+ - **Developed by:** Pierpaolo Basile, Elio Musacchio, Marco Polignano, Lucia Siciliani, Giuseppe Fiameni, Giovanni Semeraro
24
+ - **Funded by:** PNRR project FAIR - Future AI Research
25
+ - **Compute infrastructure:** [Leonardo](https://www.hpc.cineca.it/systems/hardware/leonardo/) supercomputer
26
+ - **Model type:** LLaMA 2
27
+ - **Language(s) (NLP):** Italian
28
+ - **License:** Llama 2 Community License
29
+ - **Finetuned from model:** [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
30
+
31
+ ## How to Get Started with the Model
32
+
33
+ Below you can find an example of model usage:
34
+
35
+ ```python
36
+ from transformers import AutoModelForCausalLM, AutoTokenizer
37
+
38
+ model_id = "swap-uniba/LLaMAntino-2-7b-hf-ITA"
39
+
40
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
41
+ model = AutoModelForCausalLM.from_pretrained(model_id)
42
+
43
+ prompt = "Scrivi qui un possibile prompt"
44
+
45
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
46
+ outputs = model.generate(input_ids=input_ids)
47
+
48
+ print(tokenizer.batch_decode(outputs.detach().cpu().numpy()[:, input_ids.shape[1]:], skip_special_tokens=True)[0])
49
+ ```
50
+
51
+ If you are facing issues when loading the model, you can try to load it quantized:
52
+
53
+ ```python
54
+ model = AutoModelForCausalLM.from_pretrained(model_id, load_in_8bit=True)
55
+ ```
56
+
57
+ *Note*: The model loading strategy above requires the [*bitsandbytes*](https://pypi.org/project/bitsandbytes/) and [*accelerate*](https://pypi.org/project/accelerate/) libraries
58
+
59
+ ## Citation
60
+
61
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
62
+
63
+ If you use this model in your research, please cite the following:
64
+
65
+ *Coming soon*!