mtasic85 commited on
Commit
83f6b05
·
1 Parent(s): e04a6ec

added config

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. config.json +3 -0
  3. scripts/train_model.py +0 -264
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94e73e086a5ed14149cee99a1aa3e2563ec7ab536c1653ff332999afa3520694
3
+ size 546
scripts/train_model.py DELETED
@@ -1,264 +0,0 @@
1
- import gc
2
-
3
- import torch
4
- from torch.optim import AdamW
5
- import bitsandbytes as bnb
6
- from datasets import load_dataset, Dataset
7
-
8
- from transformers import (
9
- AutoConfig,
10
- AutoTokenizer,
11
- AutoModelForCausalLM,
12
- TrainingArguments,
13
- Trainer,
14
- DataCollatorForLanguageModeling,
15
- )
16
-
17
-
18
- def _batch_iterator():
19
- ## code
20
- # dataset = load_dataset('bigcode/programming-languages-keywords', split='train')
21
-
22
- # for row in dataset:
23
- # for n in row['keywords']:
24
- # yield n
25
-
26
- # del dataset
27
- # gc.collect()
28
- # return
29
-
30
- # code
31
- dataset = (
32
- load_dataset('bigcode/the-stack-smol-xs', lang, split='train', trust_remote_code=True)
33
- for lang in [
34
- 'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly', 'augeas', 'awk', 'batchfile', 'bison', 'bluespec', 'c',
35
- 'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp', 'css', 'cuda', 'dart', 'dockerfile', 'elixir',
36
- 'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go', 'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
37
- 'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean', 'literate-agda', 'literate-coffeescript', 'literate-haskell',
38
- 'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab', 'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog',
39
- 'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext', 'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
40
- 'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan', 'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
41
- 'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt', 'yacc', 'zig'
42
- ]
43
- )
44
-
45
- for d in dataset:
46
- for row in d:
47
- yield row['content']
48
-
49
- del dataset
50
- gc.collect()
51
-
52
- # text
53
- dataset = load_dataset('nampdn-ai/tiny-textbooks', split='train')
54
-
55
- for row in dataset:
56
- yield row['text']
57
-
58
- del dataset
59
- gc.collect()
60
-
61
- ## text
62
- # dataset = (
63
- # load_dataset('wikimedia/wikisource', lang, split='train')
64
- # for lang in ['20231201.ar', '20231201.as', '20231201.az', '20231201.ban', '20231201.be', '20231201.bg', '20231201.bn', '20231201.br', '20231201.bs', '20231201.ca', '20231201.cs', '20231201.cy', '20231201.da', '20231201.de', '20231201.el', '20231201.en', '20231201.eo', '20231201.es', '20231201.et', '20231201.eu', '20231201.fa', '20231201.fi', '20231201.fo', '20231201.fr', '20231201.gl', '20231201.gu', '20231201.he', '20231201.hi', '20231201.hr', '20231201.hu', '20231201.hy', '20231201.id', '20231201.is', '20231201.it', '20231201.ja', '20231201.jv', '20231201.kn', '20231201.ko', '20231201.la', '20231201.li', '20231201.lij', '20231201.lt', '20231201.mk', '20231201.ml', '20231201.mr', '20231201.nap', '20231201.nl', '20231201.no', '20231201.or', '20231201.pa', '20231201.pl', '20231201.pms', '20231201.pt', '20231201.ro', '20231201.ru', '20231201.sa', '20231201.sah', '20231201.sk', '20231201.sl', '20231201.sr', '20231201.su', '20231201.sv', '20231201.ta', '20231201.te', '20231201.th', '20231201.tr', '20231201.uk', '20231201.vec', '20231201.vi', '20231201.wa', '20231201.yi', '20231201.zh', '20231201.zh-min-nan']
65
- # )
66
- #
67
- # for d in dataset:
68
- # for row in d['text']:
69
- # yield row
70
- #
71
- # del dataset
72
- # gc.collect()
73
-
74
- # text
75
- dataset = (
76
- load_dataset('xu-song/cc100-samples', lang, split='train')
77
- for lang in ['am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw', 'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom', 'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur', 'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh-Hans', 'zh-Hant', 'zu']
78
- )
79
-
80
- for d in dataset:
81
- for row in d['text']:
82
- yield row
83
-
84
- del dataset
85
- gc.collect()
86
-
87
- ## text
88
- # dataset = (
89
- # load_dataset('csebuetnlp/xlsum', lang, split='train')
90
- # for lang in ['amharic', 'arabic', 'azerbaijani', 'bengali', 'burmese', 'chinese_simplified', 'chinese_traditional', 'english', 'french', 'gujarati', 'hausa', 'hindi', 'igbo', 'indonesian', 'japanese', 'kirundi', 'korean', 'kyrgyz', 'marathi', 'nepali', 'oromo', 'pashto', 'persian', 'pidgin', 'portuguese', 'punjabi', 'russian', 'scottish_gaelic', 'serbian_cyrillic', 'serbian_latin', 'sinhala', 'somali', 'spanish', 'swahili', 'tamil', 'telugu', 'thai', 'tigrinya', 'turkish', 'ukrainian', 'urdu', 'uzbek', 'vietnamese', 'welsh', 'yoruba']
91
- # )
92
- #
93
- # for d in dataset:
94
- # for row in d['text']:
95
- # yield row
96
- #
97
- # del dataset
98
- # gc.collect()
99
-
100
- ## text
101
- # dataset = load_dataset('recursal/SuperWikiNEXT-32B', split='train')
102
- #
103
- # for row in dataset['text']:
104
- # yield row
105
- #
106
- # del dataset
107
- # gc.collect()
108
-
109
- # code
110
- dataset = load_dataset('m-a-p/CodeFeedback-Filtered-Instruction', split='train')
111
-
112
- for row in dataset:
113
- yield row['query'] + '\n' + row['answer']
114
-
115
- del dataset
116
- gc.collect()
117
-
118
- # code
119
- dataset = load_dataset('nampdn-ai/tiny-codes', split='train')
120
-
121
- for row in dataset:
122
- yield row['prompt'] + '\n' + row['response']
123
-
124
- del dataset
125
- gc.collect()
126
-
127
- # math
128
- dataset = load_dataset('ajibawa-2023/Maths-College', split='train')
129
-
130
- for row in dataset:
131
- yield row['instruction'] + '\n' + row['output']
132
-
133
- del dataset
134
- gc.collect()
135
-
136
- # math
137
- dataset = load_dataset('microsoft/orca-math-word-problems-200k', split='train')
138
-
139
- for row in dataset:
140
- yield row['question'] + '\n' + row['answer']
141
-
142
- del dataset
143
- gc.collect()
144
-
145
- # text
146
- dataset = load_dataset('mlabonne/FineTome-100k', split='train')
147
-
148
- for row in dataset['conversations']:
149
- yield '\n'.join(n['value'] for n in row)
150
-
151
- del dataset
152
- gc.collect()
153
-
154
- # instruction
155
- dataset = load_dataset('arcee-ai/agent-data', split='train')
156
-
157
- for row in dataset['conversations']:
158
- yield '\n'.join(n['value'] for n in row)
159
-
160
- del dataset
161
- gc.collect()
162
-
163
- # instruction
164
- dataset = (
165
- load_dataset('cognitivecomputations/SystemChat-2.0', data_files='SystemChat_filtered.jsonl', split='train'),
166
- load_dataset('cognitivecomputations/SystemChat-2.0', data_files='SystemChat_multilingual.jsonl', split='train'),
167
- )
168
-
169
- for d in dataset:
170
- for row in d['messages']:
171
- yield '\n'.join(n['content'] for n in row)
172
-
173
- del dataset
174
- gc.collect()
175
-
176
- # emoji
177
- dataset = load_dataset('badrex/llm-emoji-dataset', split='train')
178
-
179
- for row in dataset:
180
- yield f'{row["character"]}\n{row["unicode"]}\n{row["short description"]}\n{row["tags"]}\n{row["LLM description"]}'
181
-
182
- del dataset
183
- gc.collect()
184
-
185
-
186
- def batch_iterator():
187
- for text in _batch_iterator():
188
- for i in range(0, len(text), 2048):
189
- chunk = text[i:i + 2048]
190
- tokenized = tokenize_function(chunk)
191
- yield tokenized
192
-
193
-
194
- def tokenize_function(text):
195
- outputs = tokenizer(text, truncation=True, padding='max_length', max_length=2048)
196
- outputs['labels'] = outputs['input_ids'].copy()
197
- return outputs
198
-
199
-
200
- tokenizer = AutoTokenizer.from_pretrained('../')
201
- print(tokenizer)
202
-
203
- config = AutoConfig.from_pretrained('mistralai/Mistral-7B-Instruct-v0.3')
204
- config.bos_token_id = tokenizer.bos_token_id
205
- config.eos_token_id = tokenizer.eos_token_id
206
- config.unk_token_id = tokenizer.unk_token_id
207
- config.pad_token_id = tokenizer.pad_token_id
208
- config.hidden_size = 512
209
- config.intermediate_size = 1792 # int(512 * 3.5)
210
- config.max_position_embeddings = 32768 # 32 * 1024
211
- config.num_attention_heads = 12
212
- config.num_hidden_layers = 10
213
- config.num_key_value_heads = 4
214
- config.rope_theta = 1_000_000.0
215
- config.sliding_window = 4096
216
- config.torch_dtype = torch.bfloat16
217
- config.use_cache = False
218
- print(config)
219
-
220
- model = AutoModelForCausalLM.from_config(config)
221
- print(model)
222
-
223
- dataset = Dataset.from_generator(batch_iterator)
224
- print(dataset)
225
-
226
- data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
227
- print(data_collator)
228
-
229
- optimizer = bnb.optim.AdamW8bit(
230
- model.parameters(),
231
- lr=1e-5,
232
- betas=(0.9, 0.95),
233
- weight_decay=0.1,
234
- )
235
- print(optimizer)
236
-
237
- training_args = TrainingArguments(
238
- output_dir='./mistral-custom',
239
- num_train_epochs=3,
240
- per_device_train_batch_size=1,
241
- gradient_accumulation_steps=8,
242
- warmup_steps=500,
243
- learning_rate=1e-5,
244
- fp16=False,
245
- bf16=True,
246
- logging_dir='./logs',
247
- logging_steps=10,
248
- evaluation_strategy='no',
249
- save_strategy='epoch',
250
- torch_compile=True,
251
- )
252
- print(training_args)
253
-
254
- trainer = Trainer(
255
- model=model,
256
- args=training_args,
257
- train_dataset=dataset,
258
- data_collator=data_collator,
259
- optimizers=(optimizer, None)
260
- )
261
- print(trainer)
262
-
263
- trainer.train()
264
- trainer.save_model('./mistral-custom-final')