File size: 3,388 Bytes
4b4505d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: bsd-3-clause
base_model: LongSafari/hyenadna-small-32k-seqlen-hf
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: hyenadna-small-32k-seqlen-hf_ft_BioS74_1kbpHG19_DHSs_H3K27AC
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hyenadna-small-32k-seqlen-hf_ft_BioS74_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of [LongSafari/hyenadna-small-32k-seqlen-hf](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4605
- F1 Score: 0.8107
- Precision: 0.7689
- Recall: 0.8574
- Accuracy: 0.7904
- Auc: 0.8669
- Prc: 0.8594

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc    | Prc    |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.5565        | 0.1314 | 500  | 0.5060          | 0.7829   | 0.7556    | 0.8122 | 0.7641   | 0.8275 | 0.8077 |
| 0.4991        | 0.2629 | 1000 | 0.5124          | 0.7801   | 0.7916    | 0.7690 | 0.7731   | 0.8364 | 0.8255 |
| 0.494         | 0.3943 | 1500 | 0.4957          | 0.7822   | 0.8035    | 0.7619 | 0.7778   | 0.8460 | 0.8325 |
| 0.4752        | 0.5258 | 2000 | 0.5005          | 0.7964   | 0.7661    | 0.8292 | 0.7781   | 0.8496 | 0.8368 |
| 0.4546        | 0.6572 | 2500 | 0.4923          | 0.8041   | 0.7414    | 0.8785 | 0.7760   | 0.8515 | 0.8359 |
| 0.4858        | 0.7886 | 3000 | 0.4669          | 0.8017   | 0.7556    | 0.8538 | 0.7789   | 0.8495 | 0.8355 |
| 0.4677        | 0.9201 | 3500 | 0.4842          | 0.8019   | 0.7881    | 0.8162 | 0.7889   | 0.8583 | 0.8467 |
| 0.4695        | 1.0515 | 4000 | 0.4893          | 0.7893   | 0.8102    | 0.7695 | 0.7849   | 0.8616 | 0.8504 |
| 0.4576        | 1.1830 | 4500 | 0.4612          | 0.8078   | 0.7760    | 0.8423 | 0.7902   | 0.8599 | 0.8482 |
| 0.4574        | 1.3144 | 5000 | 0.4591          | 0.8122   | 0.7633    | 0.8679 | 0.7899   | 0.8629 | 0.8519 |
| 0.445         | 1.4458 | 5500 | 0.5035          | 0.7831   | 0.8194    | 0.7499 | 0.7825   | 0.8640 | 0.8589 |
| 0.4302        | 1.5773 | 6000 | 0.4984          | 0.8064   | 0.7856    | 0.8282 | 0.7917   | 0.8622 | 0.8502 |
| 0.4252        | 1.7087 | 6500 | 0.4651          | 0.8007   | 0.7973    | 0.8041 | 0.7904   | 0.8642 | 0.8551 |
| 0.4408        | 1.8402 | 7000 | 0.4837          | 0.7988   | 0.8103    | 0.7875 | 0.7923   | 0.8619 | 0.8567 |
| 0.4444        | 1.9716 | 7500 | 0.4605          | 0.8107   | 0.7689    | 0.8574 | 0.7904   | 0.8669 | 0.8594 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0