File size: 6,722 Bytes
62c1330 462525d 62c1330 462525d 62c1330 462525d 62c1330 462525d 62c1330 462525d 62c1330 462525d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
from gevent import pywsgi
import sys
import time
import argparse
import uvicorn
from typing import Union
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import os
import openedai
import numpy as np
import asyncio
from urllib.parse import urlparse
import nacos
import configparser
app = openedai.OpenAIStub()
moderation = None
device = "cuda" if torch.cuda.is_available() else "cpu"
#device = "cpu"
labels = ['hate',
'hate_threatening',
'harassment',
'harassment_threatening',
'self_harm',
'self_harm_intent',
'self_harm_instructions',
'sexual',
'sexual_minors',
'violence',
'violence_graphic',
]
label2id = {l:i for i, l in enumerate(labels)}
id2label = {i:l for i, l in enumerate(labels)}
model_name = "duanyu027/moderation_0628"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(labels),id2label=id2label, label2id=label2id, problem_type = "multi_label_classification")
model.to(device)
model.eval()
#model = torch.quantization.quantize_dynamic(
# model, {torch.nn.Linear}, dtype=torch.qint8
#)
torch.set_num_threads(1)
def register_service(client,service_name,service_ip,service_port,cluster_name,health_check_interval,weight,http_proxy,domain,protocol,direct_domain):
try:
# 初始化 metadata
metadata = {}
# 如果 http_proxy 为 True,添加额外的 metadata 键值对
if http_proxy:
metadata["http_proxy"] = True
if direct_domain:
metadata["domain"] = f"{protocol}://{service_ip}:{service_port}"
else:
metadata["domain"] = f"{domain}/port/{service_port}"
else:
metadata["http_proxy"] = False
metadata["domain"] = f"{protocol}://{service_ip}:{service_port}"
response = client.add_naming_instance(
service_name,
service_ip,
service_port,
cluster_name,
weight,
metadata,
enable=True,
healthy=True,
ephemeral=True,
heartbeat_interval=health_check_interval
)
return response
except Exception as e:
print(f"Error registering service to Nacos: {e}")
return True
class ModerationsRequest(BaseModel):
model: str = "text-moderation-latest" # or "text-moderation-stable"
input: Union[str, list[str]]
@app.post("/v1/moderations")
async def moderations(request: ModerationsRequest):
results = {
"id": f"modr-{int(time.time()*1e9)}",
"model": "text-moderation-005",
"results": [],
}
if isinstance(request.input, str):
request.input = [request.input]
thresholds = {
"sexual": 0.5,
"hate": 0.5,
"harassment": 0.5,
"self_harm": 0.5,
"sexual_minors": 0.9,
"hate_threatening": 0.9,
"violence_graphic": 0.9,
"self_harm_intent": 0.9,
"self_harm_instructions": 0.9,
"harassment_threatening": 0.9,
"violence": 0.5,
}
for text in request.input:
predictions = await predict(text, model, tokenizer)
category_scores = {labels[i]: predictions[0][i].item() for i in range(len(labels))}
detect = {key: score > thresholds[key] for key, score in category_scores.items()}
detected = any(detect.values())
results['results'].append({
'flagged': detected,
'categories': detect,
'category_scores': category_scores,
})
return results
def sigmoid(x):
return 1/(1 + np.exp(-x))
def parse_args(argv):
parser = argparse.ArgumentParser(description='Moderation API')
parser.add_argument('--host', type=str, default='0.0.0.0')
parser.add_argument('--port', type=int, default=5002)
parser.add_argument('--test-load', action='store_true')
return parser.parse_args(argv)
async def predict(text, model, tokenizer):
encoding = tokenizer.encode_plus(
text,
return_tensors='pt'
)
input_ids = encoding['input_ids'].to(device)
attention_mask = encoding['attention_mask'].to(device)
# 运行模型预测在独立的线程中
def _predict():
with torch.no_grad():
outputs = model(input_ids, attention_mask=attention_mask)
return torch.sigmoid(outputs.logits)
loop = asyncio.get_running_loop()
predictions = await loop.run_in_executor(None, _predict)
# 清理 GPU 内存
del input_ids
del attention_mask
torch.cuda.empty_cache()
return predictions
# Main
if __name__ == "__main__":
# 创建配置解析器
config = configparser.ConfigParser()
# 读取配置文件
if not config.read('config.ini'):
raise RuntimeError("配置文件不存在")
# Nacos server and other configurations
NACOS_SERVER = config['nacos']['nacos_server']
NAMESPACE = config['nacos']['namespace']
CLUSTER_NAME = config['nacos']['cluster_name']
client = nacos.NacosClient(NACOS_SERVER, namespace=NAMESPACE, username=config['nacos']['username'], password=config['nacos']['password'])
SERVICE_NAME = config['nacos']['service_name']
HEALTH_CHECK_INTERVAL = int(config['nacos']['health_check_interval'])
if config.has_option('nacos', 'weight'):
WEIGHT = int(config.get('nacos', 'weight'))
else:
WEIGHT = 1
HTTP_PROXY = config.getboolean('server', 'http_proxy')
DOMAIN = config['server']['domain']
PROTOCOL = config['server']['protocol']
DIRECT_DOMAIN = config.getboolean('server', 'direct_domain')
# Parse AutoDLServiceURL
autodl_url = os.environ.get('AutoDLServiceURL')
if not autodl_url:
raise RuntimeError("Error: AutoDLServiceURL environment variable is not set.")
parsed_url = urlparse(autodl_url)
SERVICE_IP = parsed_url.hostname
SERVICE_PORT = parsed_url.port
if not SERVICE_IP or not SERVICE_PORT:
raise RuntimeError("Error: Invalid AutoDLServiceURL format.")
print(f"Service will be registered with IP: {SERVICE_IP} and Port: {SERVICE_PORT}")
if not register_service(client,SERVICE_NAME,SERVICE_IP,SERVICE_PORT,CLUSTER_NAME,HEALTH_CHECK_INTERVAL,WEIGHT,HTTP_PROXY,DOMAIN,PROTOCOL,DIRECT_DOMAIN):
raise RuntimeError("Service is healthy but failed to register.")
app.register_model('text-moderations-latest', 'text-moderations-stable')
app.register_model('text-moderations-005', 'text-moderations-ifmain')
uvicorn.run(app, host="0.0.0.0", port=6006)
|