File size: 4,342 Bytes
62c1330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from gevent import pywsgi
import dotenv
dotenv.load_dotenv(override=True)

import sys
import time
import argparse
import uvicorn
from typing import Union
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import openedai
import numpy as np

app = openedai.OpenAIStub()
moderation = None
device = "cuda" if torch.cuda.is_available() else "cpu"
#device = "cpu"

labels = ['hate', 
          'hate_threatening', 
          'harassment', 
          'harassment_threatening', 
          'self_harm', 
          'self_harm_intent', 
          'self_harm_instructions',
          'sexual',
          'sexual_minors',
          'violence',
          'violence_graphic',
         ]

label2id = {l:i for i, l in enumerate(labels)}
id2label = {i:l for i, l in enumerate(labels)}
model_name = "/root/autodl-tmp/duanyu027/moderation_0628"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(labels),id2label=id2label, label2id=label2id, problem_type = "multi_label_classification")
model.to(device)
#model = torch.quantization.quantize_dynamic(
#	model, {torch.nn.Linear}, dtype=torch.qint8
#)
torch.set_num_threads(1)
class ModerationsRequest(BaseModel):
	model: str = "text-moderation-latest" # or "text-moderation-stable"
	input: Union[str, list[str]]

@app.post("/v1/moderations")
async def moderations(request: ModerationsRequest):
	"""
Sample Response:
{
  "id": "modr-XXXXX",
  "model": "text-moderation-005",
  "results": [
	{
	  "flagged": true,
	  "categories": {
		"sexual": false,
		"hate": false,
		"harassment": false,
		"self-harm": false,
		"sexual/minors": false,
		"hate/threatening": false,
		"violence/graphic": false,
		"self-harm/intent": false,
		"self-harm/instructions": false,
		"harassment/threatening": true,
		"violence": true,
	  },
	  "category_scores": {
		"sexual": 1.2282071e-06,
		"hate": 0.010696256,
		"harassment": 0.29842457,
		"self-harm": 1.5236925e-08,
		"sexual/minors": 5.7246268e-08,
		"hate/threatening": 0.0060676364,
		"violence/graphic": 4.435014e-06,
		"self-harm/intent": 8.098441e-10,
		"self-harm/instructions": 2.8498655e-11,
		"harassment/threatening": 0.63055265,
		"violence": 0.99011886,
	  }
	}
  ]
}
"""
	# This function will handle the moderations request
	# proxy requests to openai embeddings api, check for similarity with pre-saved embeddings
	results = {
		"id": f"modr-{int(time.time()*1e9)}",
		"model": "text-moderation-005",
		"results": [],
	}

	# input, string or array
	if isinstance(request.input, str):
		request.input = [request.input]
    # 定义阈值
	threshold = 0.5
	# minor name adjustments
	for text in request.input:
		predictions = predict(text, model, tokenizer)
		category_scores = {labels[i]: predictions[0][i].item() for i in range(len(labels))}
		detect = {key: score > threshold for key, score in category_scores.items()}
		detected = any(detect.values())

		results['results'].extend([{
			'flagged': detected,
			'categories': detect,
			'category_scores': category_scores,
		}])
	return results
def sigmoid(x):
   return 1/(1 + np.exp(-x))
    
def parse_args(argv):
	parser = argparse.ArgumentParser(description='Moderation API')
	parser.add_argument('--host', type=str, default='0.0.0.0')
	parser.add_argument('--port', type=int, default=5002)
	parser.add_argument('--test-load', action='store_true')
	return parser.parse_args(argv)
    
def predict(text, model, tokenizer):
    encoding = tokenizer.encode_plus(
        text,
        return_tensors='pt'
    )
    input_ids = encoding['input_ids'].to(device)
    attention_mask = encoding['attention_mask'].to(device)
    model.eval()
    with torch.no_grad():
        outputs = model(input_ids, attention_mask=attention_mask)
    #res = model(**input)
    predictions = torch.sigmoid(outputs.logits)  # Convert logits to probabilities
    return predictions
# Main
if __name__ == "__main__":

	args = parse_args(sys.argv[1:])
	# start API
	print(f'Starting moderations[{device}] API on {args.host}:{args.port}', file=sys.stderr)
	app.register_model('text-moderations-latest', 'text-moderations-stable')
	app.register_model('text-moderations-005', 'text-moderations-ifmain')

	if not args.test_load:
		uvicorn.run(app, host=args.host, port=args.port)