File size: 4,163 Bytes
62c1330 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
from gevent import pywsgi
import dotenv
dotenv.load_dotenv(override=True)
import sys
import time
import argparse
import uvicorn
from typing import Union
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import openedai
import numpy as np
import onnxruntime as ort
import asyncio
app = openedai.OpenAIStub()
moderation = None
device = "cpu" if torch.cuda.is_available() else "cpu"
#device = "cpu"
labels = ['hate',
'hate_threatening',
'harassment',
'harassment_threatening',
'self_harm',
'self_harm_intent',
'self_harm_instructions',
'sexual',
'sexual_minors',
'violence',
'violence_graphic',
]
label2id = {l:i for i, l in enumerate(labels)}
id2label = {i:l for i, l in enumerate(labels)}
model_name = "/root/autodl-tmp/moderation_0703_deberta_v3_small_onnx"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = ort.InferenceSession(model_name + "/model.onnx")
#model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(labels),id2label=id2label, label2id=label2id, problem_type = "multi_label_classification")
torch.set_num_threads(1)
class ModerationsRequest(BaseModel):
model: str = "text-moderation-latest" # or "text-moderation-stable"
input: Union[str, list[str]]
@app.post("/v1/moderations")
async def moderations(request: ModerationsRequest):
results = {
"id": f"modr-{int(time.time()*1e9)}",
"model": "text-moderation-005",
"results": [],
}
if isinstance(request.input, str):
request.input = [request.input]
thresholds = {
"sexual": 0.1,
"hate": 0.25,
"harassment": 0.5,
"self_harm": 0.25,
"sexual_minors": 0.5,
"hate_threatening": 0.2,
"violence_graphic": 0.25,
"self_harm_intent": 0.2,
"self_harm_instructions": 0.25,
"harassment_threatening": 0.1,
"violence": 0.25,
}
for text in request.input:
predictions = await predict(text, model, tokenizer)
category_scores = {labels[i]: predictions[0][i].item() for i in range(len(labels))}
detect = {key: score > thresholds[key] for key, score in category_scores.items()}
detected = any(detect.values())
results['results'].append({
'flagged': detected,
'categories': detect,
'category_scores': category_scores,
})
return results
def sigmoid(x):
return 1/(1 + np.exp(-x))
def parse_args(argv):
parser = argparse.ArgumentParser(description='Moderation API')
parser.add_argument('--host', type=str, default='0.0.0.0')
parser.add_argument('--port', type=int, default=5002)
parser.add_argument('--test-load', action='store_true')
return parser.parse_args(argv)
async def predict(text, ort_session, tokenizer):
# 编码输入数据
encoding = tokenizer.encode_plus(
text,
return_tensors='np' # 使用 NumPy tensors
)
input_ids = encoding['input_ids']
attention_mask = encoding['attention_mask']
# 定义 ONNX Runtime 推理函数
def _predict():
# 准备 ONNX Runtime 输入
ort_inputs = {
ort_session.get_inputs()[0].name: input_ids,
ort_session.get_inputs()[1].name: attention_mask
}
# 进行推理
ort_outs = ort_session.run(None, ort_inputs)
return torch.sigmoid(torch.from_numpy(ort_outs[0])) # 将输出转为 PyTorch Tensor 并应用 sigmoid
# 在独立线程中运行 ONNX 推理
loop = asyncio.get_running_loop()
predictions = await loop.run_in_executor(None, _predict)
return predictions
# Main
if __name__ == "__main__":
args = parse_args(sys.argv[1:])
# start API
print(f'Starting moderations[{device}] API on {args.host}:{args.port}', file=sys.stderr)
app.register_model('text-moderations-latest', 'text-moderations-stable')
app.register_model('text-moderations-005', 'text-moderations-ifmain')
if not args.test_load:
uvicorn.run(app, host=args.host, port=args.port)
|