team-data-ktzh commited on
Commit
c879aa2
·
verified ·
1 Parent(s): 9d6ef32

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -4
README.md CHANGED
@@ -44,13 +44,12 @@ entities = model.predict("Hans Meier aus Dielsdorf vertritt im Kantonsrat die FD
44
  - **Encoder:** [deepset/gelectra-large](https://huggingface.co/deepset/gelectra-large) (ELECTRA Large)
45
  - **Maximum Sequence Length:** 256 tokens
46
  - **Maximum Entity Length:** 8 words
47
- - **Training Dataset:** see https:// TODO
48
  - **Language:** de
49
  - **License:** MIT
50
 
51
  ### Model Sources
52
- - **Training repository (TODO):** []()
53
- - **SpanMarker:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
54
 
55
  ### Model Labels
56
  | Label | Examples |
@@ -96,7 +95,7 @@ Please note that this is released strictly as a task-bound model for the purpose
96
 
97
  ### Recommendations
98
 
99
- The original XML documents of the training set can be found here: TODO. The annotations may be freely modified to tailor the model to an alternative use case. Note that the modified TEI Publisher version in TODO and the notebook at TODO are required to generate a Huggingface Dataset.
100
 
101
  ## Training Details
102
 
 
44
  - **Encoder:** [deepset/gelectra-large](https://huggingface.co/deepset/gelectra-large) (ELECTRA Large)
45
  - **Maximum Sequence Length:** 256 tokens
46
  - **Maximum Entity Length:** 8 words
 
47
  - **Language:** de
48
  - **License:** MIT
49
 
50
  ### Model Sources
51
+ - **Training data:** [GitHub](https://github.com/machinelearningZH/named-entity-recognition_staatsarchiv/tree/main/data/training_data)
52
+ - **SpanMarker:** [GitHub](https://github.com/tomaarsen/SpanMarkerNER)
53
 
54
  ### Model Labels
55
  | Label | Examples |
 
95
 
96
  ### Recommendations
97
 
98
+ The original XML documents of the training set can be found [here](https://github.com/machinelearningZH/named-entity-recognition_staatsarchiv/tree/main/data/training_data). The annotations may be freely modified to tailor the model to an alternative use case. Note that [a modified TEI Publisher](https://github.com/machinelearningZH/named-entity-recognition_staatsarchiv/tree/main/ner_tei-publisher-app) and [this Jupyter notebook](https://github.com/machinelearningZH/named-entity-recognition_staatsarchiv/tree/main/notebooks/get_training_data) are required to generate a Huggingface Dataset.
99
 
100
  ## Training Details
101