File size: 1,846 Bytes
00eed0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47117d7
 
00eed0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47117d7
 
 
 
00eed0b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---

library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ucf101-subset
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3988
- Accuracy: 0.8714

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- lr_scheduler_warmup_ratio: 0.1
- training_steps: 148

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch  | Step | Validation Loss | Accuracy |

|:-------------:|:------:|:----:|:---------------:|:--------:|

| 2.1392        | 0.2568 | 38   | 1.8769          | 0.4143   |

| 1.0079        | 1.2568 | 76   | 0.9862          | 0.7286   |

| 0.4814        | 2.2568 | 114  | 0.5106          | 0.8857   |

| 0.3286        | 3.2297 | 148  | 0.3988          | 0.8714   |





### Framework versions



- Transformers 4.46.3

- Pytorch 2.4.1

- Datasets 2.19.1

- Tokenizers 0.20.0