File size: 8,182 Bytes
b9c40f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
language:
- en
license: llama3.2
library_name: transformers
base_model: meditsolutions/Llama-3.2-SUN-2.5B-chat
datasets:
- argilla/OpenHermesPreferences
- argilla/magpie-ultra-v0.1
- argilla/Capybara-Preferences-Filtered
- mlabonne/open-perfectblend
- HuggingFaceTB/everyday-conversations-llama3.1-2k
- WizardLMTeam/WizardLM_evol_instruct_V2_196k
- ProlificAI/social-reasoning-rlhf
pipeline_tag: text-generation
tags:
- TensorBlock
- GGUF
model-index:
- name: Llama-3.2-SUN-2.5B-chat
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 56.04
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.5B-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 9.41
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.5B-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 5.06
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.5B-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 1.23
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.5B-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 1.11
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.5B-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 9.04
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.5B-chat
      name: Open LLM Leaderboard
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;">
            Feedback and support: TensorBlock's  <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
        </p>
    </div>
</div>

## meditsolutions/Llama-3.2-SUN-2.5B-chat - GGUF

This repo contains GGUF format model files for [meditsolutions/Llama-3.2-SUN-2.5B-chat](https://huggingface.co/meditsolutions/Llama-3.2-SUN-2.5B-chat).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).

<div style="text-align: left; margin: 20px 0;">
    <a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
        Run them on the TensorBlock client using your local machine ↗
    </a>
</div>

## Prompt template

```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023
Today Date: 25 Nov 2024

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Llama-3.2-SUN-2.5B-chat-Q2_K.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q2_K.gguf) | Q2_K | 1.025 GB | smallest, significant quality loss - not recommended for most purposes |
| [Llama-3.2-SUN-2.5B-chat-Q3_K_S.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q3_K_S.gguf) | Q3_K_S | 1.173 GB | very small, high quality loss |
| [Llama-3.2-SUN-2.5B-chat-Q3_K_M.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q3_K_M.gguf) | Q3_K_M | 1.271 GB | very small, high quality loss |
| [Llama-3.2-SUN-2.5B-chat-Q3_K_L.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q3_K_L.gguf) | Q3_K_L | 1.355 GB | small, substantial quality loss |
| [Llama-3.2-SUN-2.5B-chat-Q4_0.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q4_0.gguf) | Q4_0 | 1.466 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Llama-3.2-SUN-2.5B-chat-Q4_K_S.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q4_K_S.gguf) | Q4_K_S | 1.475 GB | small, greater quality loss |
| [Llama-3.2-SUN-2.5B-chat-Q4_K_M.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q4_K_M.gguf) | Q4_K_M | 1.540 GB | medium, balanced quality - recommended |
| [Llama-3.2-SUN-2.5B-chat-Q5_0.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q5_0.gguf) | Q5_0 | 1.742 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Llama-3.2-SUN-2.5B-chat-Q5_K_S.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q5_K_S.gguf) | Q5_K_S | 1.742 GB | large, low quality loss - recommended |
| [Llama-3.2-SUN-2.5B-chat-Q5_K_M.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q5_K_M.gguf) | Q5_K_M | 1.780 GB | large, very low quality loss - recommended |
| [Llama-3.2-SUN-2.5B-chat-Q6_K.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q6_K.gguf) | Q6_K | 2.036 GB | very large, extremely low quality loss |
| [Llama-3.2-SUN-2.5B-chat-Q8_0.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q8_0.gguf) | Q8_0 | 2.634 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF --include "Llama-3.2-SUN-2.5B-chat-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```