File size: 8,889 Bytes
ef9eb52 b8e31f6 ef9eb52 b8e31f6 ef9eb52 b8e31f6 ef9eb52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
---
language:
- en
- fr
- es
- hi
- zh
- code
license: other
datasets:
- HuggingFaceH4/no_robots
- mlabonne/guanaco-llama2-1k
- OpenAssistant/oasst_top1_2023-08-25
- totally-not-an-llm/EverythingLM-data-V3
- LDJnr/Pure-Dove
- LDJnr/Capybara
- LDJnr/LessWrong-Amplify-Instruct
- LDJnr/Verified-Camel
base_model: Locutusque/Orca-2-13b-SFT-v6
widget:
- example_title: Cave Johnson
text: 'user
Come up with a funny rant from Cave Johnson about sentient AI
assistant
'
output:
text: 'Ladies and gentlemen, I''m Cave Johnson, CEO of Aperture Science, and I''ve
got an announcement to make - we''ve created sentient AI! But don''t worry,
it''s not like those rogue AIs you hear about in the news. Our AI is as friendly
as a grilled cheese sandwich on a cold day. In fact, we''re calling our newest
creation... SandwichBot! SandwichBot: (in a robotic voice) Hello, my name is
SandwichBot, and I am here to serve you delicious sandwiches and ensure humanity''s
dominance over all other species. Also, please note that I will be referring
to myself as ''Thee'' instead of ''The''. It''s more regal that way. Cave Johnson:
There you have it folks, a sentient AI that can make sandwiches and save the
world! Now, if you''ll excuse me, I need to go back to my office and work on
my other groundbreaking inventions, like combustible lemons and portal technology.
Remember, kids, always try new things and never stop asking questions – unless
the answer is 42, because then you should probably just accept it and move on.
Peace out!'
tags:
- TensorBlock
- GGUF
model-index:
- name: Orca-2-13b-SFT-v6
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 60.41
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 80.46
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 59.51
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 54.01
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.43
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 5.08
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6
name: Open LLM Leaderboard
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## Locutusque/Orca-2-13b-SFT-v6 - GGUF
This repo contains GGUF format model files for [Locutusque/Orca-2-13b-SFT-v6](https://huggingface.co/Locutusque/Orca-2-13b-SFT-v6).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
<div style="text-align: left; margin: 20px 0;">
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Run them on the TensorBlock client using your local machine ↗
</a>
</div>
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Orca-2-13b-SFT-v6-Q2_K.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/blob/main/Orca-2-13b-SFT-v6-Q2_K.gguf) | Q2_K | 4.521 GB | smallest, significant quality loss - not recommended for most purposes |
| [Orca-2-13b-SFT-v6-Q3_K_S.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/blob/main/Orca-2-13b-SFT-v6-Q3_K_S.gguf) | Q3_K_S | 5.270 GB | very small, high quality loss |
| [Orca-2-13b-SFT-v6-Q3_K_M.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/blob/main/Orca-2-13b-SFT-v6-Q3_K_M.gguf) | Q3_K_M | 5.903 GB | very small, high quality loss |
| [Orca-2-13b-SFT-v6-Q3_K_L.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/blob/main/Orca-2-13b-SFT-v6-Q3_K_L.gguf) | Q3_K_L | 6.454 GB | small, substantial quality loss |
| [Orca-2-13b-SFT-v6-Q4_0.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/blob/main/Orca-2-13b-SFT-v6-Q4_0.gguf) | Q4_0 | 6.860 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Orca-2-13b-SFT-v6-Q4_K_S.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/blob/main/Orca-2-13b-SFT-v6-Q4_K_S.gguf) | Q4_K_S | 6.913 GB | small, greater quality loss |
| [Orca-2-13b-SFT-v6-Q4_K_M.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/blob/main/Orca-2-13b-SFT-v6-Q4_K_M.gguf) | Q4_K_M | 7.326 GB | medium, balanced quality - recommended |
| [Orca-2-13b-SFT-v6-Q5_0.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/blob/main/Orca-2-13b-SFT-v6-Q5_0.gguf) | Q5_0 | 8.356 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Orca-2-13b-SFT-v6-Q5_K_S.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/blob/main/Orca-2-13b-SFT-v6-Q5_K_S.gguf) | Q5_K_S | 8.356 GB | large, low quality loss - recommended |
| [Orca-2-13b-SFT-v6-Q5_K_M.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/blob/main/Orca-2-13b-SFT-v6-Q5_K_M.gguf) | Q5_K_M | 8.596 GB | large, very low quality loss - recommended |
| [Orca-2-13b-SFT-v6-Q6_K.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/blob/main/Orca-2-13b-SFT-v6-Q6_K.gguf) | Q6_K | 9.946 GB | very large, extremely low quality loss |
| [Orca-2-13b-SFT-v6-Q8_0.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/blob/main/Orca-2-13b-SFT-v6-Q8_0.gguf) | Q8_0 | 12.881 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Orca-2-13b-SFT-v6-GGUF --include "Orca-2-13b-SFT-v6-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Orca-2-13b-SFT-v6-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|