Upload folder using huggingface_hub
Browse files
server.py
CHANGED
@@ -31,7 +31,7 @@ class EmbeddingRequest(BaseModel):
|
|
31 |
embedding: List[float]
|
32 |
|
33 |
class TextResponse(BaseModel):
|
34 |
-
|
35 |
|
36 |
# Model initialization status
|
37 |
INITIALIZATION_STATUS = {
|
@@ -124,10 +124,14 @@ async def inference(request: EmbeddingRequest) -> TextResponse:
|
|
124 |
logger.info(f"Converted embedding to tensor with shape: {embedding.shape}")
|
125 |
|
126 |
# Run inference
|
127 |
-
|
128 |
logger.info("Generation complete")
|
129 |
|
130 |
-
|
|
|
|
|
|
|
|
|
131 |
|
132 |
except Exception as e:
|
133 |
logger.error(f"Inference failed: {str(e)}", exc_info=True)
|
@@ -140,5 +144,3 @@ if __name__ == "__main__":
|
|
140 |
import uvicorn
|
141 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
142 |
|
143 |
-
|
144 |
-
|
|
|
31 |
embedding: List[float]
|
32 |
|
33 |
class TextResponse(BaseModel):
|
34 |
+
texts: List[str] = []
|
35 |
|
36 |
# Model initialization status
|
37 |
INITIALIZATION_STATUS = {
|
|
|
124 |
logger.info(f"Converted embedding to tensor with shape: {embedding.shape}")
|
125 |
|
126 |
# Run inference
|
127 |
+
results = inference_recipe.generate_batch(cfg=cfg, video_ib_embed=embedding)
|
128 |
logger.info("Generation complete")
|
129 |
|
130 |
+
# Convert results to list if it's not already
|
131 |
+
if isinstance(results, str):
|
132 |
+
results = [results]
|
133 |
+
|
134 |
+
return TextResponse(texts=results)
|
135 |
|
136 |
except Exception as e:
|
137 |
logger.error(f"Inference failed: {str(e)}", exc_info=True)
|
|
|
144 |
import uvicorn
|
145 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
146 |
|
|
|
|