tg1482 commited on
Commit
77e8a53
·
verified ·
1 Parent(s): 8614e1f

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ metrics:
4
+ - accuracy
5
+ pipeline_tag: text-classification
6
+ tags:
7
+ - setfit
8
+ - sentence-transformers
9
+ - text-classification
10
+ - generated_from_setfit_trainer
11
+ widget:
12
+ - text: Point out any dull descriptions that need more color
13
+ - text: Find places where I repeat my main points unnecessarily
14
+ - text: What's a compelling method to reveal a secret in my plot
15
+ - text: How do I handle flashbacks in a non-linear story
16
+ - text: Suggest some comedic elements to lighten a dark plot
17
+ inference: true
18
+ ---
19
+
20
+ # SetFit
21
+
22
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A LinearDiscriminantAnalysis instance is used for classification.
23
+
24
+ The model has been trained using an efficient few-shot learning technique that involves:
25
+
26
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
27
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
28
+
29
+ ## Model Details
30
+
31
+ ### Model Description
32
+ - **Model Type:** SetFit
33
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
34
+ - **Classification head:** a LinearDiscriminantAnalysis instance
35
+ - **Maximum Sequence Length:** 512 tokens
36
+ - **Number of Classes:** 3 classes
37
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
38
+ <!-- - **Language:** Unknown -->
39
+ <!-- - **License:** Unknown -->
40
+
41
+ ### Model Sources
42
+
43
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
44
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
45
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
46
+
47
+ ### Model Labels
48
+ | Label | Examples |
49
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
50
+ | 1 | <ul><li>'Can you identify specific areas that need improvement in my text'</li><li>'Point out the flaws in my writing style, please'</li><li>'Which parts of my draft are the weakest'</li></ul> |
51
+ | 0 | <ul><li>"How do I make my character's driving force more compelling"</li><li>"Any tips to deepen my protagonist's underlying goals"</li><li>"Suggestions for strengthening the reasons behind my character's actions"</li></ul> |
52
+ | 2 | <ul><li>'How does the Pro version elevate my writing experience'</li><li>'Could you list the premium perks of Quarkle Pro'</li><li>'What special advantages come with upgrading to Pro'</li></ul> |
53
+
54
+ ## Uses
55
+
56
+ ### Direct Use for Inference
57
+
58
+ First install the SetFit library:
59
+
60
+ ```bash
61
+ pip install setfit
62
+ ```
63
+
64
+ Then you can load this model and run inference.
65
+
66
+ ```python
67
+ from setfit import SetFitModel
68
+
69
+ # Download from the 🤗 Hub
70
+ model = SetFitModel.from_pretrained("setfit_model_id")
71
+ # Run inference
72
+ preds = model("How do I handle flashbacks in a non-linear story")
73
+ ```
74
+
75
+ <!--
76
+ ### Downstream Use
77
+
78
+ *List how someone could finetune this model on their own dataset.*
79
+ -->
80
+
81
+ <!--
82
+ ### Out-of-Scope Use
83
+
84
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
85
+ -->
86
+
87
+ <!--
88
+ ## Bias, Risks and Limitations
89
+
90
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
91
+ -->
92
+
93
+ <!--
94
+ ### Recommendations
95
+
96
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
97
+ -->
98
+
99
+ ## Training Details
100
+
101
+ ### Training Set Metrics
102
+ | Training set | Min | Median | Max |
103
+ |:-------------|:----|:-------|:----|
104
+ | Word count | 1 | 8.7947 | 14 |
105
+
106
+ | Label | Training Sample Count |
107
+ |:------|:----------------------|
108
+ | 0 | 153 |
109
+ | 1 | 144 |
110
+ | 2 | 117 |
111
+
112
+ ### Framework Versions
113
+ - Python: 3.10.15
114
+ - SetFit: 1.2.0.dev0
115
+ - Sentence Transformers: 3.3.1
116
+ - Transformers: 4.47.1
117
+ - PyTorch: 2.5.1
118
+ - Datasets: 3.2.0
119
+ - Tokenizers: 0.21.0
120
+
121
+ ## Citation
122
+
123
+ ### BibTeX
124
+ ```bibtex
125
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
126
+ doi = {10.48550/ARXIV.2209.11055},
127
+ url = {https://arxiv.org/abs/2209.11055},
128
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
129
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
130
+ title = {Efficient Few-Shot Learning Without Prompts},
131
+ publisher = {arXiv},
132
+ year = {2022},
133
+ copyright = {Creative Commons Attribution 4.0 International}
134
+ }
135
+ ```
136
+
137
+ <!--
138
+ ## Glossary
139
+
140
+ *Clearly define terms in order to be accessible across audiences.*
141
+ -->
142
+
143
+ <!--
144
+ ## Model Card Authors
145
+
146
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
147
+ -->
148
+
149
+ <!--
150
+ ## Model Card Contact
151
+
152
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
153
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "thenlper/gte-small",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.47.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": true
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:772487fa98b86cf51ec61e86b82e441b7ffe27b2a62179dae487bba07da68c76
3
+ size 133462128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52267a2b6ec7fb945539a9f6bdb6dd8ed969cd2771c91e02ebe239106f78f7fb
3
+ size 1194467
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff