File size: 1,854 Bytes
de93dd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
language: ko
license: apache-2.0
tags:
  - korean
---

# KoELECTRA (Base Discriminator)

Pretrained ELECTRA Language Model for Korean (`koelectra-base-discriminator`)

For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md).

## Usage

### Load model and tokenizer

```python
>>> from transformers import ElectraModel, ElectraTokenizer

>>> model = ElectraModel.from_pretrained("monologg/koelectra-base-discriminator")
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-discriminator")
```

### Tokenizer example

```python
>>> from transformers import ElectraTokenizer
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-discriminator")
>>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]")
['[CLS]', '한국어', 'E', '##L', '##EC', '##T', '##RA', '##를', '공유', '##합니다', '.', '[SEP]']
>>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'E', '##L', '##EC', '##T', '##RA', '##를', '공유', '##합니다', '.', '[SEP]'])
[2, 18429, 41, 6240, 15229, 6204, 20894, 5689, 12622, 10690, 18, 3]
```

## Example using ElectraForPreTraining

```python
import torch
from transformers import ElectraForPreTraining, ElectraTokenizer

discriminator = ElectraForPreTraining.from_pretrained("monologg/koelectra-base-discriminator")
tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-discriminator")

sentence = "나는 방금 밥을 먹었다."
fake_sentence = "나는 내일 밥을 먹었다."

fake_tokens = tokenizer.tokenize(fake_sentence)
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")

discriminator_outputs = discriminator(fake_inputs)
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)

print(list(zip(fake_tokens, predictions.tolist()[1:-1])))
```