thanhduycao
commited on
Commit
·
711daf1
1
Parent(s):
fc336c0
Model save
Browse files
README.md
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
base_model: nguyenvulebinh/wav2vec2-base-vi
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: wav2vec2-baseline
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# wav2vec2-baseline
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vi](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vi) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: nan
|
21 |
+
- Wer: 1.0
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 8e-06
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 500
|
47 |
+
- num_epochs: 30.0
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
53 |
+
| No log | 0.43 | 100 | inf | 1.2580 |
|
54 |
+
| No log | 0.85 | 200 | inf | 1.0 |
|
55 |
+
| No log | 1.28 | 300 | inf | 1.0 |
|
56 |
+
| No log | 1.71 | 400 | inf | 1.0 |
|
57 |
+
| 12.36 | 2.14 | 500 | inf | 1.0 |
|
58 |
+
| 12.36 | 2.56 | 600 | inf | 1.0 |
|
59 |
+
| 12.36 | 2.99 | 700 | inf | 1.0 |
|
60 |
+
| 12.36 | 3.42 | 800 | inf | 1.0 |
|
61 |
+
| 12.36 | 3.85 | 900 | inf | 1.0 |
|
62 |
+
| 8.4674 | 4.27 | 1000 | inf | 1.0 |
|
63 |
+
| 8.4674 | 4.7 | 1100 | inf | 1.0 |
|
64 |
+
| 8.4674 | 5.13 | 1200 | inf | 1.0 |
|
65 |
+
| 8.4674 | 5.56 | 1300 | inf | 1.0 |
|
66 |
+
| 8.4674 | 5.98 | 1400 | inf | 1.0 |
|
67 |
+
| 6.9866 | 6.41 | 1500 | inf | 1.0 |
|
68 |
+
| 6.9866 | 6.84 | 1600 | inf | 1.0 |
|
69 |
+
| 6.9866 | 7.26 | 1700 | inf | 1.0 |
|
70 |
+
| 6.9866 | 7.69 | 1800 | inf | 1.0 |
|
71 |
+
| 6.9866 | 8.12 | 1900 | inf | 1.0 |
|
72 |
+
| 6.8089 | 8.55 | 2000 | inf | 1.0 |
|
73 |
+
| 6.8089 | 8.97 | 2100 | inf | 1.0 |
|
74 |
+
| 6.8089 | 9.4 | 2200 | inf | 1.0 |
|
75 |
+
| 6.8089 | 9.83 | 2300 | inf | 1.0 |
|
76 |
+
| 6.8089 | 10.26 | 2400 | inf | 1.0 |
|
77 |
+
| 6.7847 | 10.68 | 2500 | inf | 1.0 |
|
78 |
+
| 6.7847 | 11.11 | 2600 | inf | 1.0 |
|
79 |
+
| 6.7847 | 11.54 | 2700 | inf | 1.0 |
|
80 |
+
| 6.7847 | 11.97 | 2800 | inf | 1.0 |
|
81 |
+
| 6.7847 | 12.39 | 2900 | inf | 1.0 |
|
82 |
+
| 6.7941 | 12.82 | 3000 | inf | 1.0 |
|
83 |
+
| 6.7941 | 13.25 | 3100 | inf | 1.0 |
|
84 |
+
| 6.7941 | 13.68 | 3200 | inf | 1.0 |
|
85 |
+
| 6.7941 | 14.1 | 3300 | inf | 1.0 |
|
86 |
+
| 6.7941 | 14.53 | 3400 | inf | 1.0 |
|
87 |
+
| 6.7956 | 14.96 | 3500 | inf | 1.0 |
|
88 |
+
| 6.7956 | 15.38 | 3600 | inf | 1.0 |
|
89 |
+
| 6.7956 | 15.81 | 3700 | inf | 1.0 |
|
90 |
+
| 6.7956 | 16.24 | 3800 | inf | 1.0 |
|
91 |
+
| 6.7956 | 16.67 | 3900 | inf | 1.0 |
|
92 |
+
| 6.8102 | 17.09 | 4000 | inf | 1.0 |
|
93 |
+
| 6.8102 | 17.52 | 4100 | inf | 1.0 |
|
94 |
+
| 6.8102 | 17.95 | 4200 | inf | 1.0 |
|
95 |
+
| 6.8102 | 18.38 | 4300 | inf | 1.0 |
|
96 |
+
| 6.8102 | 18.8 | 4400 | inf | 1.0 |
|
97 |
+
| 6.7761 | 19.23 | 4500 | inf | 1.0 |
|
98 |
+
| 6.7761 | 19.66 | 4600 | inf | 1.0 |
|
99 |
+
| 6.7761 | 20.09 | 4700 | inf | 1.0 |
|
100 |
+
| 6.7761 | 20.51 | 4800 | inf | 1.0 |
|
101 |
+
| 6.7761 | 20.94 | 4900 | inf | 1.0 |
|
102 |
+
| 6.8063 | 21.37 | 5000 | inf | 1.0 |
|
103 |
+
| 6.8063 | 21.79 | 5100 | inf | 1.0 |
|
104 |
+
| 6.8063 | 22.22 | 5200 | inf | 1.0 |
|
105 |
+
| 6.8063 | 22.65 | 5300 | inf | 1.0 |
|
106 |
+
| 6.8063 | 23.08 | 5400 | inf | 1.0 |
|
107 |
+
| 6.7934 | 23.5 | 5500 | inf | 1.0 |
|
108 |
+
| 6.7934 | 23.93 | 5600 | inf | 1.0 |
|
109 |
+
| 6.7934 | 24.36 | 5700 | inf | 1.0 |
|
110 |
+
| 6.7934 | 24.79 | 5800 | inf | 1.0 |
|
111 |
+
| 6.7934 | 25.21 | 5900 | inf | 1.0 |
|
112 |
+
| 6.7819 | 25.64 | 6000 | inf | 1.0 |
|
113 |
+
| 6.7819 | 26.07 | 6100 | inf | 1.0 |
|
114 |
+
| 6.7819 | 26.5 | 6200 | inf | 1.0 |
|
115 |
+
| 6.7819 | 26.92 | 6300 | inf | 1.0 |
|
116 |
+
| 6.7819 | 27.35 | 6400 | inf | 1.0 |
|
117 |
+
| 6.8278 | 27.78 | 6500 | inf | 1.0 |
|
118 |
+
| 6.8278 | 28.21 | 6600 | inf | 1.0 |
|
119 |
+
| 6.8278 | 28.63 | 6700 | inf | 1.0 |
|
120 |
+
| 6.8278 | 29.06 | 6800 | nan | 1.0 |
|
121 |
+
| 6.8278 | 29.49 | 6900 | nan | 1.0 |
|
122 |
+
| 6.7427 | 29.91 | 7000 | nan | 1.0 |
|
123 |
+
|
124 |
+
|
125 |
+
### Framework versions
|
126 |
+
|
127 |
+
- Transformers 4.33.0.dev0
|
128 |
+
- Pytorch 2.0.0
|
129 |
+
- Datasets 2.14.4
|
130 |
+
- Tokenizers 0.13.3
|