thegenerativegeneration
commited on
Upload 13 files
Browse files- README.md +48 -60
- config.json +1 -1
- model.safetensors +1 -1
- model_head.pkl +1 -1
- tokenizer.json +2 -2
- tokenizer_config.json +7 -0
README.md
CHANGED
@@ -9,12 +9,11 @@ base_model: intfloat/multilingual-e5-small
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
-
- text: 'query:
|
13 |
-
- text: 'query:
|
14 |
-
- text: 'query:
|
15 |
-
- text: 'query:
|
16 |
-
- text: 'query:
|
17 |
-
fertig?'
|
18 |
pipeline_tag: text-classification
|
19 |
inference: true
|
20 |
---
|
@@ -47,10 +46,10 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
47 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
48 |
|
49 |
### Model Labels
|
50 |
-
| Label | Examples
|
51 |
-
|
52 |
-
| 0 | <ul><li>'query:
|
53 |
-
| 1 | <ul><li>'query:
|
54 |
|
55 |
## Uses
|
56 |
|
@@ -70,7 +69,7 @@ from setfit import SetFitModel
|
|
70 |
# Download from the 🤗 Hub
|
71 |
model = SetFitModel.from_pretrained("setfit_model_id")
|
72 |
# Run inference
|
73 |
-
preds = model("query:
|
74 |
```
|
75 |
|
76 |
<!--
|
@@ -102,23 +101,23 @@ preds = model("query: はい、持っていますよ。すぐにメールで送
|
|
102 |
### Training Set Metrics
|
103 |
| Training set | Min | Median | Max |
|
104 |
|:-------------|:----|:-------|:----|
|
105 |
-
| Word count | 2 | 7.
|
106 |
|
107 |
| Label | Training Sample Count |
|
108 |
|:------|:----------------------|
|
109 |
-
| 0 |
|
110 |
-
| 1 |
|
111 |
|
112 |
### Training Hyperparameters
|
113 |
- batch_size: (16, 2)
|
114 |
- num_epochs: (1, 16)
|
115 |
-
- max_steps:
|
116 |
- sampling_strategy: undersampling
|
117 |
- body_learning_rate: (1e-05, 1e-05)
|
118 |
- head_learning_rate: 0.001
|
119 |
- loss: CosineSimilarityLoss
|
120 |
- distance_metric: cosine_distance
|
121 |
-
- margin: 0.
|
122 |
- end_to_end: False
|
123 |
- use_amp: False
|
124 |
- warmup_proportion: 0.1
|
@@ -128,50 +127,39 @@ preds = model("query: はい、持っていますよ。すぐにメールで送
|
|
128 |
- load_best_model_at_end: True
|
129 |
|
130 |
### Training Results
|
131 |
-
| Epoch
|
132 |
-
|
133 |
-
| 0.
|
134 |
-
| 0.
|
135 |
-
| 0.
|
136 |
-
| 0.
|
137 |
-
| 0.
|
138 |
-
| 0.
|
139 |
-
| 0.
|
140 |
-
| 0.
|
141 |
-
| 0.
|
142 |
-
| 0.
|
143 |
-
| 0.
|
144 |
-
| 0.
|
145 |
-
| 0.
|
146 |
-
| 0.
|
147 |
-
| 0.
|
148 |
-
| 0.
|
149 |
-
| 0.
|
150 |
-
| 0.
|
151 |
-
| 0.
|
152 |
-
| 0.
|
153 |
-
| 0.
|
154 |
-
| 0.
|
155 |
-
| 0.
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.
|
162 |
-
|
163 |
-
|
164 |
-
| 0.3874 | 1550 | 0.0002 | - |
|
165 |
-
| 0.3999 | 1600 | 0.0001 | 0.1031 |
|
166 |
-
| 0.4124 | 1650 | 0.0001 | - |
|
167 |
-
| 0.4249 | 1700 | 0.0001 | 0.0996 |
|
168 |
-
| 0.4374 | 1750 | 0.0002 | - |
|
169 |
-
| 0.4499 | 1800 | 0.0001 | 0.0903 |
|
170 |
-
| 0.4624 | 1850 | 0.0002 | - |
|
171 |
-
| 0.4749 | 1900 | 0.0001 | 0.0901 |
|
172 |
-
| 0.4874 | 1950 | 0.0002 | - |
|
173 |
-
| 0.4999 | 2000 | 0.0001 | 0.0854 |
|
174 |
-
|
175 |
### Framework Versions
|
176 |
- Python: 3.10.11
|
177 |
- SetFit: 1.0.3
|
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
+
- text: 'query: Baiklah, kita cakap lagi nanti, Mark. Selamat hari!'
|
13 |
+
- text: 'query: Tôi xin lỗi nhưng tôi phải đi'
|
14 |
+
- text: 'query: 次回行くときは、私を連れて行ってください。もっと自然の中で活動したいと思っています。'
|
15 |
+
- text: 'query: Entschuldigung, ich muss jetzt gehen.'
|
16 |
+
- text: 'query: Buenos días, ¿cómo están ustedes?'
|
|
|
17 |
pipeline_tag: text-classification
|
18 |
inference: true
|
19 |
---
|
|
|
46 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
47 |
|
48 |
### Model Labels
|
49 |
+
| Label | Examples |
|
50 |
+
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
51 |
+
| 0 | <ul><li>'query: Értem. Mit csinálunk most?'</li><li>'query: Ola Luca, que tal? Rematache o traballo?'</li><li>'query: Lijepo je. Hvala.'</li></ul> |
|
52 |
+
| 1 | <ul><li>'query: Жөнейін, кейін кездесеміз.'</li><li>'query: Така, ќе се видиме повторно.'</li><li>'query: ठीक है बाद में बात करते हैं मार्क अच्छा दिन'</li></ul> |
|
53 |
|
54 |
## Uses
|
55 |
|
|
|
69 |
# Download from the 🤗 Hub
|
70 |
model = SetFitModel.from_pretrained("setfit_model_id")
|
71 |
# Run inference
|
72 |
+
preds = model("query: Tôi xin lỗi nhưng tôi phải đi")
|
73 |
```
|
74 |
|
75 |
<!--
|
|
|
101 |
### Training Set Metrics
|
102 |
| Training set | Min | Median | Max |
|
103 |
|:-------------|:----|:-------|:----|
|
104 |
+
| Word count | 2 | 7.2168 | 25 |
|
105 |
|
106 |
| Label | Training Sample Count |
|
107 |
|:------|:----------------------|
|
108 |
+
| 0 | 346 |
|
109 |
+
| 1 | 346 |
|
110 |
|
111 |
### Training Hyperparameters
|
112 |
- batch_size: (16, 2)
|
113 |
- num_epochs: (1, 16)
|
114 |
+
- max_steps: 1400
|
115 |
- sampling_strategy: undersampling
|
116 |
- body_learning_rate: (1e-05, 1e-05)
|
117 |
- head_learning_rate: 0.001
|
118 |
- loss: CosineSimilarityLoss
|
119 |
- distance_metric: cosine_distance
|
120 |
+
- margin: 0.05
|
121 |
- end_to_end: False
|
122 |
- use_amp: False
|
123 |
- warmup_proportion: 0.1
|
|
|
127 |
- load_best_model_at_end: True
|
128 |
|
129 |
### Training Results
|
130 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
131 |
+
|:----------:|:--------:|:-------------:|:---------------:|
|
132 |
+
| 0.0004 | 1 | 0.3607 | - |
|
133 |
+
| 0.0179 | 50 | 0.3254 | - |
|
134 |
+
| 0.0357 | 100 | 0.2303 | 0.2049 |
|
135 |
+
| 0.0536 | 150 | 0.106 | - |
|
136 |
+
| 0.0714 | 200 | 0.1294 | 0.0748 |
|
137 |
+
| 0.0893 | 250 | 0.087 | - |
|
138 |
+
| 0.1071 | 300 | 0.0732 | 0.0787 |
|
139 |
+
| 0.1250 | 350 | 0.0019 | - |
|
140 |
+
| 0.1428 | 400 | 0.0027 | 0.1072 |
|
141 |
+
| 0.1607 | 450 | 0.0015 | - |
|
142 |
+
| 0.1785 | 500 | 0.0008 | 0.0999 |
|
143 |
+
| 0.1964 | 550 | 0.0016 | - |
|
144 |
+
| 0.2142 | 600 | 0.0004 | 0.1215 |
|
145 |
+
| 0.2321 | 650 | 0.0012 | - |
|
146 |
+
| 0.2499 | 700 | 0.0008 | 0.1267 |
|
147 |
+
| 0.2678 | 750 | 0.0005 | - |
|
148 |
+
| 0.2856 | 800 | 0.0003 | 0.1216 |
|
149 |
+
| 0.3035 | 850 | 0.0003 | - |
|
150 |
+
| 0.3213 | 900 | 0.0004 | 0.1142 |
|
151 |
+
| 0.3392 | 950 | 0.0004 | - |
|
152 |
+
| **0.3570** | **1000** | **0.0004** | **0.0616** |
|
153 |
+
| 0.3749 | 1050 | 0.0002 | - |
|
154 |
+
| 0.3927 | 1100 | 0.0004 | 0.0946 |
|
155 |
+
| 0.4106 | 1150 | 0.0002 | - |
|
156 |
+
| 0.4284 | 1200 | 0.0003 | 0.1091 |
|
157 |
+
| 0.4463 | 1250 | 0.0002 | - |
|
158 |
+
| 0.4641 | 1300 | 0.0003 | 0.1141 |
|
159 |
+
| 0.4820 | 1350 | 0.0004 | - |
|
160 |
+
| 0.4998 | 1400 | 0.0002 | 0.1209 |
|
161 |
+
|
162 |
+
* The bold row denotes the saved checkpoint.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
### Framework Versions
|
164 |
- Python: 3.10.11
|
165 |
- SetFit: 1.0.3
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "checkpoints/step_1000",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 470637416
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27c89f801f10bb9afe5e4f308a41a0d7492b8725340318de1847eec8f6b84cf1
|
3 |
size 470637416
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4608
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b054fef0d715653a0dba9374d17ce2d5fa1a3fb6560f2768740890da80a0321
|
3 |
size 4608
|
tokenizer.json
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55ce1a4600af70b33f5a7fba12dbb41a504d3c08737c9b26b5e7fd6e437a9a23
|
3 |
+
size 17083087
|
tokenizer_config.json
CHANGED
@@ -46,10 +46,17 @@
|
|
46 |
"cls_token": "<s>",
|
47 |
"eos_token": "</s>",
|
48 |
"mask_token": "<mask>",
|
|
|
49 |
"model_max_length": 512,
|
|
|
50 |
"pad_token": "<pad>",
|
|
|
|
|
51 |
"sep_token": "</s>",
|
52 |
"sp_model_kwargs": {},
|
|
|
53 |
"tokenizer_class": "XLMRobertaTokenizer",
|
|
|
|
|
54 |
"unk_token": "<unk>"
|
55 |
}
|
|
|
46 |
"cls_token": "<s>",
|
47 |
"eos_token": "</s>",
|
48 |
"mask_token": "<mask>",
|
49 |
+
"max_length": 512,
|
50 |
"model_max_length": 512,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
"pad_token": "<pad>",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
"sep_token": "</s>",
|
56 |
"sp_model_kwargs": {},
|
57 |
+
"stride": 0,
|
58 |
"tokenizer_class": "XLMRobertaTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
"unk_token": "<unk>"
|
62 |
}
|