theintuitiveye commited on
Commit
2525f6b
·
1 Parent(s): fbf3eba

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +155 -0
  2. model_index.json +32 -0
  3. pipeline.py +22 -0
  4. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
2
+ import gradio as gr
3
+ import torch
4
+ from PIL import Image
5
+
6
+ model_id = 'theintuitiveye/modernartstyle'
7
+ prefix = ''
8
+
9
+ scheduler = DPMSolverMultistepScheduler(
10
+ beta_start=0.00085,
11
+ beta_end=0.012,
12
+ beta_schedule="scaled_linear",
13
+ num_train_timesteps=1000,
14
+ trained_betas=None,
15
+ predict_epsilon=True,
16
+ thresholding=False,
17
+ algorithm_type="dpmsolver++",
18
+ solver_type="midpoint",
19
+ lower_order_final=True,
20
+ )
21
+
22
+ pipe = StableDiffusionPipeline.from_pretrained(
23
+ model_id,
24
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
25
+ scheduler=scheduler)
26
+
27
+ pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
28
+ model_id,
29
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
30
+ scheduler=scheduler)
31
+
32
+ if torch.cuda.is_available():
33
+ pipe = pipe.to("cuda")
34
+ pipe_i2i = pipe_i2i.to("cuda")
35
+
36
+ def error_str(error, title="Error"):
37
+ return f"""#### {title}
38
+ {error}""" if error else ""
39
+
40
+ def inference(prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", auto_prefix=True):
41
+
42
+ generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
43
+ prompt = f"{prefix} {prompt}" if auto_prefix else prompt
44
+
45
+ try:
46
+ if img is not None:
47
+ return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None
48
+ else:
49
+ return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None
50
+ except Exception as e:
51
+ return None, error_str(e)
52
+
53
+ def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator):
54
+
55
+ result = pipe(
56
+ prompt,
57
+ negative_prompt = neg_prompt,
58
+ num_inference_steps = int(steps),
59
+ guidance_scale = guidance,
60
+ width = width,
61
+ height = height,
62
+ generator = generator)
63
+
64
+ return replace_nsfw_images(result)
65
+
66
+ def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
67
+
68
+ ratio = min(height / img.height, width / img.width)
69
+ img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
70
+ result = pipe_i2i(
71
+ prompt,
72
+ negative_prompt = neg_prompt,
73
+ init_image = img,
74
+ num_inference_steps = int(steps),
75
+ strength = strength,
76
+ guidance_scale = guidance,
77
+ width = width,
78
+ height = height,
79
+ generator = generator)
80
+
81
+ return replace_nsfw_images(result)
82
+
83
+ def replace_nsfw_images(results):
84
+
85
+ for i in range(len(results.images)):
86
+ if results.nsfw_content_detected[i]:
87
+ results.images[i] = Image.open("nsfw.png")
88
+ return results.images[0]
89
+
90
+ css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
91
+ """
92
+ with gr.Blocks(css=css) as demo:
93
+ gr.HTML(
94
+ f"""
95
+ <div class="main-div">
96
+ <div>
97
+ <h1>Hassanblend1.4</h1>
98
+ </div>
99
+ <p>
100
+ Demo for <a href="https://huggingface.co/theintuitiveye/modernartstyle">modernartstyle</a> Stable Diffusion model.<br>
101
+ Add the following tokens to your prompts for the model to work properly: <b></b>.
102
+ </p>
103
+ <p>This demo is currently on cpu, to use it upgrade to gpu by going to settings after duplicating this space: <a style="display:inline-block" href="https://huggingface.co/spaces/akhaliq/hassanblend1.4?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> </p>
104
+ Running on <b>{"GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"}</b>
105
+ </div>
106
+ """
107
+ )
108
+ with gr.Row():
109
+
110
+ with gr.Column(scale=55):
111
+ with gr.Group():
112
+ with gr.Row():
113
+ prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder=f"{prefix} [your prompt]").style(container=False)
114
+ generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
115
+
116
+ image_out = gr.Image(height=512)
117
+ error_output = gr.Markdown()
118
+
119
+ with gr.Column(scale=45):
120
+ with gr.Tab("Options"):
121
+ with gr.Group():
122
+ neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
123
+ auto_prefix = gr.Checkbox(label="Prefix styling tokens automatically ()", value=True)
124
+
125
+ with gr.Row():
126
+ guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
127
+ steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1)
128
+
129
+ with gr.Row():
130
+ width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
131
+ height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
132
+
133
+ seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
134
+
135
+ with gr.Tab("Image to image"):
136
+ with gr.Group():
137
+ image = gr.Image(label="Image", height=256, tool="editor", type="pil")
138
+ strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
139
+
140
+ auto_prefix.change(lambda x: gr.update(placeholder=f"{prefix} [your prompt]" if x else "[Your prompt]"), inputs=auto_prefix, outputs=prompt, queue=False)
141
+
142
+ inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, auto_prefix]
143
+ outputs = [image_out, error_output]
144
+ prompt.submit(inference, inputs=inputs, outputs=outputs)
145
+ generate.click(inference, inputs=inputs, outputs=outputs)
146
+
147
+ gr.HTML("""
148
+ <div style="border-top: 1px solid #303030;">
149
+ <br>
150
+ <p>This space was created using <a href="https://huggingface.co/spaces/anzorq/sd-space-creator">SD Space Creator</a>.</p>
151
+ </div>
152
+ """)
153
+
154
+ demo.queue(concurrency_count=1)
155
+ demo.launch()
model_index.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "StableDiffusionPipeline",
3
+ "_diffusers_version": "0.7.2",
4
+ "feature_extractor": [
5
+ "transformers",
6
+ "CLIPFeatureExtractor"
7
+ ],
8
+ "safety_checker": [
9
+ "stable_diffusion",
10
+ "StableDiffusionSafetyChecker"
11
+ ],
12
+ "scheduler": [
13
+ "diffusers",
14
+ "PNDMScheduler"
15
+ ],
16
+ "text_encoder": [
17
+ "transformers",
18
+ "CLIPTextModel"
19
+ ],
20
+ "tokenizer": [
21
+ "transformers",
22
+ "CLIPTokenizer"
23
+ ],
24
+ "unet": [
25
+ "diffusers",
26
+ "UNet2DConditionModel"
27
+ ],
28
+ "vae": [
29
+ "diffusers",
30
+ "AutoencoderKL"
31
+ ]
32
+ }
pipeline.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class PreTrainedPipeline():
2
+ def __init__(self, path=""):
3
+ # IMPLEMENT_THIS
4
+ # Preload all the elements you are going to need at inference.
5
+ # For instance your model, processors, tokenizer that might be needed.
6
+ # This function is only called once, so do all the heavy processing I/O here"""
7
+ raise NotImplementedError(
8
+ "Please implement PreTrainedPipeline __init__ function"
9
+ )
10
+
11
+ def __call__(self, inputs: str):
12
+ """
13
+ Args:
14
+ inputs (:obj:`str`):
15
+ a string containing some text
16
+ Return:
17
+ A :obj:`PIL.Image` with the raw image representation as PIL.
18
+ """
19
+ # IMPLEMENT_THIS
20
+ raise NotImplementedError(
21
+ "Please implement PreTrainedPipeline __call__ function"
22
+ )
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu113
2
+ torch
3
+ diffusers
4
+ transformers
5
+ accelerate
6
+ ftfy