thesven commited on
Commit
76d4ed7
·
verified ·
1 Parent(s): d8ebbc0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -150
README.md CHANGED
@@ -198,144 +198,6 @@ You are a helpful assistant that answers in JSON. Here's the json schema you mus
198
 
199
  Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON.
200
 
201
-
202
- # Benchmarks
203
-
204
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/suBbCUIxpcRvhCv6-DBDQ.png)
205
-
206
- ## GPT4All:
207
- ```
208
-
209
- |    Task     |Version| Metric |Value |   |Stderr|
210
-
211
- |-------------|------:|--------|-----:|---|-----:|
212
-
213
- |arc_challenge|      0|acc     |0.5529|±  |0.0145|
214
-
215
- |             |       |acc_norm|0.5870|±  |0.0144|
216
-
217
- |arc_easy     |      0|acc     |0.8371|±  |0.0076|
218
-
219
- |             |       |acc_norm|0.8144|±  |0.0080|
220
-
221
- |boolq        |      1|acc     |0.8599|±  |0.0061|
222
-
223
- |hellaswag    |      0|acc     |0.6133|±  |0.0049|
224
-
225
- |             |       |acc_norm|0.7989|±  |0.0040|
226
-
227
- |openbookqa   |      0|acc     |0.3940|±  |0.0219|
228
-
229
- |             |       |acc_norm|0.4680|±  |0.0223|
230
-
231
- |piqa         |      0|acc     |0.8063|±  |0.0092|
232
-
233
- |             |       |acc_norm|0.8156|±  |0.0090|
234
-
235
- |winogrande   |      0|acc     |0.7372|±  |0.0124|
236
-
237
- ```
238
-
239
- Average: 72.59
240
-
241
- ## AGIEval:
242
- ```
243
- |             Task             |Version| Metric |Value |   |Stderr|
244
- |------------------------------|------:|--------|-----:|---|-----:|
245
- |agieval_aqua_rat              |      0|acc     |0.2441|±  |0.0270|
246
- |                              |       |acc_norm|0.2441|±  |0.0270|
247
- |agieval_logiqa_en             |      0|acc     |0.3687|±  |0.0189|
248
- |                              |       |acc_norm|0.3840|±  |0.0191|
249
- |agieval_lsat_ar               |      0|acc     |0.2304|±  |0.0278|
250
- |                              |       |acc_norm|0.2174|±  |0.0273|
251
- |agieval_lsat_lr               |      0|acc     |0.5471|±  |0.0221|
252
- |                              |       |acc_norm|0.5373|±  |0.0221|
253
- |agieval_lsat_rc               |      0|acc     |0.6617|±  |0.0289|
254
- |                              |       |acc_norm|0.6357|±  |0.0294|
255
- |agieval_sat_en                |      0|acc     |0.7670|±  |0.0295|
256
- |                              |       |acc_norm|0.7379|±  |0.0307|
257
- |agieval_sat_en_without_passage|      0|acc     |0.4417|±  |0.0347|
258
- |                              |       |acc_norm|0.4223|±  |0.0345|
259
- |agieval_sat_math              |      0|acc     |0.4000|±  |0.0331|
260
- |                              |       |acc_norm|0.3455|±  |0.0321|
261
- ```
262
-
263
- Average: 44.05
264
-
265
- ## BigBench:
266
-
267
- ```
268
-
269
- |                      Task                      |Version|       Metric        |Value |   |Stderr|
270
- |------------------------------------------------|------:|---------------------|-----:|---|-----:|
271
- |bigbench_causal_judgement                       |      0|multiple_choice_grade|0.6000|±  |0.0356|
272
- |bigbench_date_understanding                     |      0|multiple_choice_grade|0.6585|±  |0.0247|
273
- |bigbench_disambiguation_qa                      |      0|multiple_choice_grade|0.3178|±  |0.0290|
274
- |bigbench_geometric_shapes                       |      0|multiple_choice_grade|0.2340|±  |0.0224|
275
- |                                                |       |exact_str_match      |0.0000|±  |0.0000|
276
- |bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|0.2980|±  |0.0205|
277
- |bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|0.2057|±  |0.0153|
278
- |bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|0.5367|±  |0.0288|
279
- |bigbench_movie_recommendation                   |      0|multiple_choice_grade|0.4040|±  |0.0220|
280
- |bigbench_navigate                               |      0|multiple_choice_grade|0.4970|±  |0.0158|
281
- |bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|0.7075|±  |0.0102|
282
- |bigbench_ruin_names                             |      0|multiple_choice_grade|0.4821|±  |0.0236|
283
- |bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|0.2295|±  |0.0133|
284
- |bigbench_snarks                                 |      0|multiple_choice_grade|0.6906|±  |0.0345|
285
- |bigbench_sports_understanding                   |      0|multiple_choice_grade|0.5375|±  |0.0159|
286
- |bigbench_temporal_sequences                     |      0|multiple_choice_grade|0.6270|±  |0.0153|
287
- |bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|0.2216|±  |0.0118|
288
- |bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|0.1594|±  |0.0088|
289
- |bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|0.5367|±  |0.0288|
290
- ```
291
-
292
- Average: 44.13
293
-
294
- **IFEval**: 72.64
295
-
296
- **MT_Bench**: Turn 1 - 8.3875, Turn 2 - 8.00625, Average - 8.196875
297
-
298
- # Inference Code
299
-
300
- Here is example code using HuggingFace Transformers to inference the model (note: in 4bit, it will require around 5GB of VRAM)
301
-
302
- Note: To use function calling, you should see the github repo above.
303
-
304
- ```python
305
- # Code to inference Hermes with HF Transformers
306
- # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages
307
-
308
- import torch
309
- from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM
310
- import bitsandbytes, flash_attn
311
-
312
- tokenizer = AutoTokenizer.from_pretrained('NousResearch/Hermes-2-Theta-Llama-3-8B', trust_remote_code=True)
313
- model = LlamaForCausalLM.from_pretrained(
314
- "NousResearch/Hermes-2-Theta-Llama-3-8B",
315
- torch_dtype=torch.float16,
316
- device_map="auto",
317
- load_in_8bit=False,
318
- load_in_4bit=True,
319
- use_flash_attention_2=True
320
- )
321
-
322
- prompts = [
323
- """<|im_start|>system
324
- You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|>
325
- <|im_start|>user
326
- Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|>
327
- <|im_start|>assistant""",
328
- ]
329
-
330
- for chat in prompts:
331
- print(chat)
332
- input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
333
- generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
334
- response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
335
- print(f"Response: {response}")
336
- ```
337
-
338
-
339
  ## Inference Code for Function Calling:
340
 
341
  All code for utilizing, parsing, and building function calling templates is available on our github:
@@ -343,18 +205,6 @@ All code for utilizing, parsing, and building function calling templates is avai
343
 
344
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/oi4CiGh50xmoviUQnh8R3.png)
345
 
346
- # Chat Interfaces
347
-
348
- When quantized versions of the model are released, I recommend using LM Studio for chatting with Hermes 2 Pro. It does not support function calling - for that use our github repo. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box.
349
- In LM-Studio, simply select the ChatML Prefix on the settings side pane:
350
-
351
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png)
352
-
353
-
354
- ## Quantized Versions:
355
-
356
- GGUF Versions Available Here: https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B-GGUF
357
-
358
  # How to cite:
359
 
360
  ```bibtext
 
198
 
199
  Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON.
200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201
  ## Inference Code for Function Calling:
202
 
203
  All code for utilizing, parsing, and building function calling templates is available on our github:
 
205
 
206
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/oi4CiGh50xmoviUQnh8R3.png)
207
 
 
 
 
 
 
 
 
 
 
 
 
 
208
  # How to cite:
209
 
210
  ```bibtext