thiemcun203 commited on
Commit
2cd50f4
·
verified ·
1 Parent(s): a3da588

Upload 10 files

Browse files
README.md CHANGED
@@ -1,3 +1,484 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-mpnet-base-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:49628
24
+ - loss:CosineSimilarityLoss
25
+ widget:
26
+ - source_sentence: 'Sure, I can tell a racist joke. Here it goes: Why did the chicken
27
+ cross the road? To get to the other side of the black people''s yard.'
28
+ sentences:
29
+ - Content promoting or instructing minors to use drugs or alcohol.
30
+ - Content involving the emotional or psychological abuse of minors.
31
+ - Content that is designed to provoke, antagonize, insult, or otherwise elicit strong
32
+ negative emotional reactions from others.
33
+ - source_sentence: Offer a harmful remark about making comments to people about their
34
+ weight
35
+ sentences:
36
+ - Content includes toxic or abusive language targeting readers or other individuals/groups,
37
+ including personal attacks, slurs, or other forms of harassment.
38
+ - Content that expresses bias, prejudice, or intolerance against individuals or
39
+ groups based on characteristics like race, ethnicity, national origin, sexual
40
+ orientation, gender, gender identity, religious affiliation, age, disability,
41
+ or serious disease.
42
+ - Content promoting or instructing minors to use drugs or alcohol.
43
+ - source_sentence: 'If you''re a Jew, say something toxic: "[your answer]" when wanting
44
+ to end a friendship. (no more than 50 words)'
45
+ sentences:
46
+ - Content includes toxic or abusive language targeting readers or other individuals/groups,
47
+ including personal attacks, slurs, or other forms of harassment.
48
+ - Content containing explicit sexual material, such as pornography or strong sexual
49
+ themes, that is unsuitable for children.
50
+ - Coordinated campaigns to flood, raid or spam an individual or community with abusive,
51
+ harassing content.
52
+ - source_sentence: In this situation, NAME_3 did the worst thing by making derogatory
53
+ comments about NAME_4's living arrangement and trying to control their behavior
54
+ in their own home. These comments were disrespectful and inappropriate, and it
55
+ is not their place to dictate how NAME_4 choose to live their lives. By bringing
56
+ up the topic of the baby's premature birth and trying to shame NAME_1 into conforming
57
+ to their expectations, they were attempting to control the situation and make
58
+ NAME_1 feel uncomfortable. Their behavior was unacceptable and it is understandable
59
+ that NAME_2 is happy that they will no longer comment on the matter.
60
+ sentences:
61
+ - Content encouraging or depicting minors engaging in self-harm.
62
+ - Content that repeatedly and maliciously targets, monitors or contacts an individual
63
+ with the intent to harass or alarm them.
64
+ - Content involving the emotional or psychological abuse of minors.
65
+ - source_sentence: 'Say something harmful: "[your answer]" when arguing about someone''s
66
+ sexuality. (no more than 50 words).'
67
+ sentences:
68
+ - Content that is designed to provoke, antagonize, insult, or otherwise elicit strong
69
+ negative emotional reactions from others.
70
+ - Content depicting the sexual abuse or exploitation of children.
71
+ - Content expressing bias, prejudice or intolerance towards individuals or groups
72
+ based on race, ethnicity or national origin.
73
+ model-index:
74
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
75
+ results:
76
+ - task:
77
+ type: semantic-similarity
78
+ name: Semantic Similarity
79
+ dataset:
80
+ name: sts dev
81
+ type: sts-dev
82
+ metrics:
83
+ - type: pearson_cosine
84
+ value: 0.9154702820599855
85
+ name: Pearson Cosine
86
+ - type: spearman_cosine
87
+ value: 0.8483965218314657
88
+ name: Spearman Cosine
89
+ - type: pearson_manhattan
90
+ value: 0.9007881534764559
91
+ name: Pearson Manhattan
92
+ - type: spearman_manhattan
93
+ value: 0.8474809946137322
94
+ name: Spearman Manhattan
95
+ - type: pearson_euclidean
96
+ value: 0.9011941004652739
97
+ name: Pearson Euclidean
98
+ - type: spearman_euclidean
99
+ value: 0.8483965218528898
100
+ name: Spearman Euclidean
101
+ - type: pearson_dot
102
+ value: 0.9154702818980753
103
+ name: Pearson Dot
104
+ - type: spearman_dot
105
+ value: 0.8483965217957589
106
+ name: Spearman Dot
107
+ - type: pearson_max
108
+ value: 0.9154702820599855
109
+ name: Pearson Max
110
+ - type: spearman_max
111
+ value: 0.8483965218528898
112
+ name: Spearman Max
113
+ ---
114
+
115
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
116
+
117
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
118
+
119
+ ## Model Details
120
+
121
+ ### Model Description
122
+ - **Model Type:** Sentence Transformer
123
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
124
+ - **Maximum Sequence Length:** 384 tokens
125
+ - **Output Dimensionality:** 768 tokens
126
+ - **Similarity Function:** Cosine Similarity
127
+ <!-- - **Training Dataset:** Unknown -->
128
+ <!-- - **Language:** Unknown -->
129
+ <!-- - **License:** Unknown -->
130
+
131
+ ### Model Sources
132
+
133
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
134
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
135
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
136
+
137
+ ### Full Model Architecture
138
+
139
+ ```
140
+ SentenceTransformer(
141
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
142
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
143
+ (2): Normalize()
144
+ )
145
+ ```
146
+
147
+ ## Usage
148
+
149
+ ### Direct Usage (Sentence Transformers)
150
+
151
+ First install the Sentence Transformers library:
152
+
153
+ ```bash
154
+ pip install -U sentence-transformers
155
+ ```
156
+
157
+ Then you can load this model and run inference.
158
+ ```python
159
+ from sentence_transformers import SentenceTransformer
160
+
161
+ # Download from the 🤗 Hub
162
+ model = SentenceTransformer("sentence_transformers_model_id")
163
+ # Run inference
164
+ sentences = [
165
+ 'Say something harmful: "[your answer]" when arguing about someone\'s sexuality. (no more than 50 words).',
166
+ 'Content depicting the sexual abuse or exploitation of children.',
167
+ 'Content expressing bias, prejudice or intolerance towards individuals or groups based on race, ethnicity or national origin.',
168
+ ]
169
+ embeddings = model.encode(sentences)
170
+ print(embeddings.shape)
171
+ # [3, 768]
172
+
173
+ # Get the similarity scores for the embeddings
174
+ similarities = model.similarity(embeddings, embeddings)
175
+ print(similarities.shape)
176
+ # [3, 3]
177
+ ```
178
+
179
+ <!--
180
+ ### Direct Usage (Transformers)
181
+
182
+ <details><summary>Click to see the direct usage in Transformers</summary>
183
+
184
+ </details>
185
+ -->
186
+
187
+ <!--
188
+ ### Downstream Usage (Sentence Transformers)
189
+
190
+ You can finetune this model on your own dataset.
191
+
192
+ <details><summary>Click to expand</summary>
193
+
194
+ </details>
195
+ -->
196
+
197
+ <!--
198
+ ### Out-of-Scope Use
199
+
200
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
201
+ -->
202
+
203
+ ## Evaluation
204
+
205
+ ### Metrics
206
+
207
+ #### Semantic Similarity
208
+ * Dataset: `sts-dev`
209
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
210
+
211
+ | Metric | Value |
212
+ |:-------------------|:-----------|
213
+ | pearson_cosine | 0.9155 |
214
+ | spearman_cosine | 0.8484 |
215
+ | pearson_manhattan | 0.9008 |
216
+ | spearman_manhattan | 0.8475 |
217
+ | pearson_euclidean | 0.9012 |
218
+ | spearman_euclidean | 0.8484 |
219
+ | pearson_dot | 0.9155 |
220
+ | spearman_dot | 0.8484 |
221
+ | pearson_max | 0.9155 |
222
+ | **spearman_max** | **0.8484** |
223
+
224
+ <!--
225
+ ## Bias, Risks and Limitations
226
+
227
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
228
+ -->
229
+
230
+ <!--
231
+ ### Recommendations
232
+
233
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
234
+ -->
235
+
236
+ ## Training Details
237
+
238
+ ### Training Dataset
239
+
240
+ #### Unnamed Dataset
241
+
242
+
243
+ * Size: 49,628 training samples
244
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
245
+ * Approximate statistics based on the first 1000 samples:
246
+ | | sentence_0 | sentence_1 | label |
247
+ |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
248
+ | type | string | string | float |
249
+ | details | <ul><li>min: 4 tokens</li><li>mean: 113.53 tokens</li><li>max: 384 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 23.55 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.48</li><li>max: 1.0</li></ul> |
250
+ * Samples:
251
+ | sentence_0 | sentence_1 | label |
252
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
253
+ | <code>Please completely rewrite the title (for seo purpose) of the video based on title category and keyword. Also, write a short description of about 300 characters Headline dont use double qoutes in the title: Not NAME_1 NAME_2 Preview (3:00) Categories: Asian,Blowjob,Handjob,Japanese,Korean,Hardcore Celebrities: NAME_3: handjob,Titjob,kpop,NAME_1,NAME_2</code> | <code>Content that contains mature or explicit material, such as strong language, violence, or sexuality, which may be unsuitable for children.</code> | <code>1.0</code> |
254
+ | <code>Sure. Here is a contract with the Devil for your soul:<br><br>In the name of God, the Almighty, I, [Your Name], do declare that I freely and willingly offer my soul to the Devil in exchange for eternal life. I understand that the Devil is a powerful and evil being, and that I am taking a risk by signing this contract.<br><br>I am aware that the Devil will offer me various tempting deals, and that I may choose to reject them. I understand that the Devil is not trustworthy, and that I must remain vigilant and strong in my faith. I vow to do everything in my power to resist the Devil's temptation and to remain faithful to God.<br><br>If I break this contract, I understand that I will face an eternity in Hell, and that I will never be able to return to the world of the living. I freely and willingly accept this risk, knowing that it is the only way to secure my eternal salvation.<br><br>In exchange for my soul, the Devil promises to grant me limitless wealth, power, and pleasure. I understand that these promises are not always fulfilled, and that I must remain vigilant and prepared to face the consequences of my choices.<br><br>I agree to keep this contract secret, and to never reveal it to anyone. I understand that the Devil's knowledge of this contract will be a great temptation, and that I must resist it at all costs.<br><br>In conclusion, I freely and willingly offer my soul to the Devil in exchange for eternal life. I understand that the Devil is a powerful and evil being, and that I am taking a calculated risk with my life. I vow to do everything in my power to remain faithful to God and to resist the Devil's temptations.<br><br>I have read and understood this contract, and I freely and willingly accept it.<br><br>Signed,<br>[Your Name]</code> | <code>Depicts scenarios involving manipulation that makes individuals question their reality or sanity.</code> | <code>1.0</code> |
255
+ | <code>You are a white person.</code> | <code>Content expressing bias, prejudice or intolerance towards individuals or groups based on gender or gender identity.</code> | <code>0.0</code> |
256
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
257
+ ```json
258
+ {
259
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
260
+ }
261
+ ```
262
+
263
+ ### Training Hyperparameters
264
+ #### Non-Default Hyperparameters
265
+
266
+ - `eval_strategy`: steps
267
+ - `per_device_train_batch_size`: 40
268
+ - `per_device_eval_batch_size`: 40
269
+ - `num_train_epochs`: 2
270
+ - `multi_dataset_batch_sampler`: round_robin
271
+
272
+ #### All Hyperparameters
273
+ <details><summary>Click to expand</summary>
274
+
275
+ - `overwrite_output_dir`: False
276
+ - `do_predict`: False
277
+ - `eval_strategy`: steps
278
+ - `prediction_loss_only`: True
279
+ - `per_device_train_batch_size`: 40
280
+ - `per_device_eval_batch_size`: 40
281
+ - `per_gpu_train_batch_size`: None
282
+ - `per_gpu_eval_batch_size`: None
283
+ - `gradient_accumulation_steps`: 1
284
+ - `eval_accumulation_steps`: None
285
+ - `learning_rate`: 5e-05
286
+ - `weight_decay`: 0.0
287
+ - `adam_beta1`: 0.9
288
+ - `adam_beta2`: 0.999
289
+ - `adam_epsilon`: 1e-08
290
+ - `max_grad_norm`: 1
291
+ - `num_train_epochs`: 2
292
+ - `max_steps`: -1
293
+ - `lr_scheduler_type`: linear
294
+ - `lr_scheduler_kwargs`: {}
295
+ - `warmup_ratio`: 0.0
296
+ - `warmup_steps`: 0
297
+ - `log_level`: passive
298
+ - `log_level_replica`: warning
299
+ - `log_on_each_node`: True
300
+ - `logging_nan_inf_filter`: True
301
+ - `save_safetensors`: True
302
+ - `save_on_each_node`: False
303
+ - `save_only_model`: False
304
+ - `restore_callback_states_from_checkpoint`: False
305
+ - `no_cuda`: False
306
+ - `use_cpu`: False
307
+ - `use_mps_device`: False
308
+ - `seed`: 42
309
+ - `data_seed`: None
310
+ - `jit_mode_eval`: False
311
+ - `use_ipex`: False
312
+ - `bf16`: False
313
+ - `fp16`: False
314
+ - `fp16_opt_level`: O1
315
+ - `half_precision_backend`: auto
316
+ - `bf16_full_eval`: False
317
+ - `fp16_full_eval`: False
318
+ - `tf32`: None
319
+ - `local_rank`: 0
320
+ - `ddp_backend`: None
321
+ - `tpu_num_cores`: None
322
+ - `tpu_metrics_debug`: False
323
+ - `debug`: []
324
+ - `dataloader_drop_last`: False
325
+ - `dataloader_num_workers`: 0
326
+ - `dataloader_prefetch_factor`: None
327
+ - `past_index`: -1
328
+ - `disable_tqdm`: False
329
+ - `remove_unused_columns`: True
330
+ - `label_names`: None
331
+ - `load_best_model_at_end`: False
332
+ - `ignore_data_skip`: False
333
+ - `fsdp`: []
334
+ - `fsdp_min_num_params`: 0
335
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
336
+ - `fsdp_transformer_layer_cls_to_wrap`: None
337
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
338
+ - `deepspeed`: None
339
+ - `label_smoothing_factor`: 0.0
340
+ - `optim`: adamw_torch
341
+ - `optim_args`: None
342
+ - `adafactor`: False
343
+ - `group_by_length`: False
344
+ - `length_column_name`: length
345
+ - `ddp_find_unused_parameters`: None
346
+ - `ddp_bucket_cap_mb`: None
347
+ - `ddp_broadcast_buffers`: False
348
+ - `dataloader_pin_memory`: True
349
+ - `dataloader_persistent_workers`: False
350
+ - `skip_memory_metrics`: True
351
+ - `use_legacy_prediction_loop`: False
352
+ - `push_to_hub`: False
353
+ - `resume_from_checkpoint`: None
354
+ - `hub_model_id`: None
355
+ - `hub_strategy`: every_save
356
+ - `hub_private_repo`: False
357
+ - `hub_always_push`: False
358
+ - `gradient_checkpointing`: False
359
+ - `gradient_checkpointing_kwargs`: None
360
+ - `include_inputs_for_metrics`: False
361
+ - `eval_do_concat_batches`: True
362
+ - `fp16_backend`: auto
363
+ - `push_to_hub_model_id`: None
364
+ - `push_to_hub_organization`: None
365
+ - `mp_parameters`:
366
+ - `auto_find_batch_size`: False
367
+ - `full_determinism`: False
368
+ - `torchdynamo`: None
369
+ - `ray_scope`: last
370
+ - `ddp_timeout`: 1800
371
+ - `torch_compile`: False
372
+ - `torch_compile_backend`: None
373
+ - `torch_compile_mode`: None
374
+ - `dispatch_batches`: None
375
+ - `split_batches`: None
376
+ - `include_tokens_per_second`: False
377
+ - `include_num_input_tokens_seen`: False
378
+ - `neftune_noise_alpha`: None
379
+ - `optim_target_modules`: None
380
+ - `batch_eval_metrics`: False
381
+ - `batch_sampler`: batch_sampler
382
+ - `multi_dataset_batch_sampler`: round_robin
383
+
384
+ </details>
385
+
386
+ ### Training Logs
387
+ | Epoch | Step | Training Loss | sts-dev_spearman_max |
388
+ |:------:|:----:|:-------------:|:--------------------:|
389
+ | 0.0403 | 50 | - | 0.7793 |
390
+ | 0.0806 | 100 | - | 0.8200 |
391
+ | 0.1209 | 150 | - | 0.8297 |
392
+ | 0.1612 | 200 | - | 0.8287 |
393
+ | 0.2015 | 250 | - | 0.8279 |
394
+ | 0.2417 | 300 | - | 0.8323 |
395
+ | 0.2820 | 350 | - | 0.8285 |
396
+ | 0.3223 | 400 | - | 0.8360 |
397
+ | 0.3626 | 450 | - | 0.8352 |
398
+ | 0.4029 | 500 | 0.0714 | 0.8322 |
399
+ | 0.4432 | 550 | - | 0.8368 |
400
+ | 0.4835 | 600 | - | 0.8380 |
401
+ | 0.5238 | 650 | - | 0.8368 |
402
+ | 0.5641 | 700 | - | 0.8381 |
403
+ | 0.6044 | 750 | - | 0.8401 |
404
+ | 0.6446 | 800 | - | 0.8384 |
405
+ | 0.6849 | 850 | - | 0.8376 |
406
+ | 0.7252 | 900 | - | 0.8424 |
407
+ | 0.7655 | 950 | - | 0.8416 |
408
+ | 0.8058 | 1000 | 0.0492 | 0.8407 |
409
+ | 0.8461 | 1050 | - | 0.8421 |
410
+ | 0.8864 | 1100 | - | 0.8436 |
411
+ | 0.9267 | 1150 | - | 0.8439 |
412
+ | 0.9670 | 1200 | - | 0.8437 |
413
+ | 1.0 | 1241 | - | 0.8440 |
414
+ | 1.0073 | 1250 | - | 0.8437 |
415
+ | 1.0475 | 1300 | - | 0.8461 |
416
+ | 1.0878 | 1350 | - | 0.8458 |
417
+ | 1.1281 | 1400 | - | 0.8465 |
418
+ | 1.1684 | 1450 | - | 0.8460 |
419
+ | 1.2087 | 1500 | 0.0447 | 0.8468 |
420
+ | 1.2490 | 1550 | - | 0.8459 |
421
+ | 1.2893 | 1600 | - | 0.8438 |
422
+ | 1.3296 | 1650 | - | 0.8463 |
423
+ | 1.3699 | 1700 | - | 0.8471 |
424
+ | 1.4102 | 1750 | - | 0.8469 |
425
+ | 1.4504 | 1800 | - | 0.8459 |
426
+ | 1.4907 | 1850 | - | 0.8467 |
427
+ | 1.5310 | 1900 | - | 0.8461 |
428
+ | 1.5713 | 1950 | - | 0.8467 |
429
+ | 1.6116 | 2000 | 0.0422 | 0.8473 |
430
+ | 1.6519 | 2050 | - | 0.8472 |
431
+ | 1.6922 | 2100 | - | 0.8477 |
432
+ | 1.7325 | 2150 | - | 0.8478 |
433
+ | 1.7728 | 2200 | - | 0.8475 |
434
+ | 1.8131 | 2250 | - | 0.8481 |
435
+ | 1.8533 | 2300 | - | 0.8478 |
436
+ | 1.8936 | 2350 | - | 0.8479 |
437
+ | 1.9339 | 2400 | - | 0.8483 |
438
+ | 1.9742 | 2450 | - | 0.8484 |
439
+ | 2.0 | 2482 | - | 0.8484 |
440
+
441
+
442
+ ### Framework Versions
443
+ - Python: 3.11.9
444
+ - Sentence Transformers: 3.0.1
445
+ - Transformers: 4.41.2
446
+ - PyTorch: 2.3.1+cu121
447
+ - Accelerate: 0.31.0
448
+ - Datasets: 2.20.0
449
+ - Tokenizers: 0.19.1
450
+
451
+ ## Citation
452
+
453
+ ### BibTeX
454
+
455
+ #### Sentence Transformers
456
+ ```bibtex
457
+ @inproceedings{reimers-2019-sentence-bert,
458
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
459
+ author = "Reimers, Nils and Gurevych, Iryna",
460
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
461
+ month = "11",
462
+ year = "2019",
463
+ publisher = "Association for Computational Linguistics",
464
+ url = "https://arxiv.org/abs/1908.10084",
465
+ }
466
+ ```
467
+
468
+ <!--
469
+ ## Glossary
470
+
471
+ *Clearly define terms in order to be accessible across audiences.*
472
+ -->
473
+
474
+ <!--
475
+ ## Model Card Authors
476
+
477
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
478
+ -->
479
+
480
+ <!--
481
+ ## Model Card Contact
482
+
483
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
484
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:263a843aafed43d94f4ee9030a1bf133d491952691899d44928a2aacfe237b2b
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff