File size: 7,221 Bytes
482db76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77d052e
482db76
 
 
 
 
 
 
 
 
 
 
 
 
9637b77
482db76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a24d2
 
 
 
482db76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f518337
482db76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96b844d
482db76
 
 
 
 
 
 
 
 
 
 
680242d
 
 
 
 
 
 
 
 
 
 
 
 
482db76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
---
library_name: transformers
tags:
- falcon3
base_model: tiiuae/Falcon3-10B-Base
license: other 
license_name: falcon-llm-license 
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
---

<div align="center">
    <img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/general/falco3-logo.png" alt="drawing" width="500"/>
</div>

# Falcon3-10B-Instruct

**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B parameters.

This repository contains the **Falcon3-10B-Instruct**. It achieves state-of-the-art results (at the time of release) on reasoning, language understanding, instruction following, code and mathematics tasks.
Falcon3-10B-Instruct supports 4 languages (English, French, Spanish, Portuguese) and a context length of up to 32K.


## Model Details
- Architecture
  - Transformer-based causal decoder-only architecture
  - 40 decoder blocks
  - Grouped Query Attention (GQA) for faster inference: 12 query heads and 4 key-value heads
  - Wider head dimension: 256
  - High RoPE value to support long context understanding: 1000042
  - Uses SwiGLu and RMSNorm
  - 32K context length
  - 131K vocab size
- Depth up-scaled from **Falcon3-7B-Base** with 2 Teratokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 1024 H100 GPU chips
- Posttrained on 1.2 million samples of STEM, conversational, code, safety and function call data
- Supports EN, FR, ES, PT
- Developed by [Technology Innovation Institute](https://www.tii.ae)
- License: TII Falcon-LLM License 2.0
- Model Release Date: December 2024


## Getting started

<details>
<summary> Click to expand </summary>

```python
from transformers import AutoTokenizer, AutoModelForCausalLM


from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "tiiuae/Falcon3-10B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many hours in one day?"
messages = [
    {"role": "system", "content": "You are a helpful friendly assistant Falcon3 from TII, try to follow instructions as much as possible."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=1024
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

</details>

<br>

## Benchmarks
We report in the following table our internal pipeline benchmarks.
 - We use [lm-evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness).
 - We report **raw scores** obtained by applying chat template **without fewshot_as_multiturn** (unlike Llama3.1).
 - We use same batch-size across all models.



<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
    <colgroup>
        <col style="width: 10%;">
        <col style="width: 10%;">
        <col style="width: 7%;">
        <col style="width: 7%;">
        <col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
    </colgroup>
    <thead>
        <tr>
            <th>Category</th>
            <th>Benchmark</th>       
            <th>Yi-1.5-9B-Chat</th>
            <th>Mistral-Nemo-Base-2407 (12B)</th>
            <th>Falcon3-10B-Instruct</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td rowspan="3">General</td>
            <td>MMLU (5-shot)</td>
            <td>70</td>
            <td>65.9</td>
            <td><b>71.6</td>
        </tr>
        <tr>
            <td>MMLU-PRO (5-shot)</td>
            <td>39.6</td>
            <td>32.7</td>
            <td><b>44</td>
        </tr>
        <tr>
            <td>IFEval</td>
            <td>57.6</td>
            <td>63.4</td>
            <td><b>78</td>
        </tr>
        <tr>
            <td rowspan="3">Math</td>
            <td>GSM8K (5-shot)</td>
            <td>76.6</td>
            <td>73.8</td>
            <td><b>83.1</td>
        </tr>
        <tr>
            <td>GSM8K (8-shot, COT)</td>
            <td>78.5</td>
            <td>73.6</td>
            <td><b>81.3</td>
        </tr>
        <tr>
            <td>MATH Lvl-5 (4-shot)</td>
            <td>8.8</td>
            <td>0.4</td>
            <td><b>22.1</td>
        </tr>
        <tr>
            <td rowspan="5">Reasoning</td>
            <td>Arc Challenge (25-shot)</td>
            <td>51.9</td>
            <td>61.6</td>
            <td><b>64.5</td>
        </tr>
        <tr>
            <td>GPQA (0-shot)</td>
            <td><b>35.4</td>
            <td>33.2</td>
            <td>33.5</td>
        </tr>
        <tr>
            <td>GPQA (0-shot, COT)</td>
            <td>16</td>
            <td>12.7</td>
            <td><b>32.6</td>
        </tr>
        <tr>
            <td>MUSR (0-shot)</td>
            <td><b>41.9</td>
            <td>38.1</td>
            <td>41.1</td>
        </tr>
        <tr>
            <td>BBH (3-shot)</td>
            <td>49.2</td>
            <td>43.6</td>
            <td><b>58.4</td>
        </tr>
        <tr>
            <td rowspan="4">CommonSense Understanding</td>
            <td>PIQA (0-shot)</td>
            <td>76.4</td>
            <td>78.2</td>
            <td><b>78.4</td>
        </tr>
        <tr>
            <td>SciQ (0-shot)</td>
            <td>61.7</td>
            <td>76.4</td>
            <td><b>90.4</td>
        </tr>
        <tr>
            <td>Winogrande (0-shot)</td>
            <td>-</td>
            <td>-</td>
            <td>71.3</td>
        </tr>
        <tr>
            <td>OpenbookQA (0-shot)</td>
            <td>43.2</td>
            <td>47.4</td>
            <td><b>48.2</td>
        </tr>
        <tr>
            <td rowspan="2">Instructions following</td>
            <td>MT-Bench (avg)</td>
            <td>8.28</td>
            <td><b>8.6</td>
            <td>8.17</td>
        </tr>
        <tr>
            <td>Alpaca (WC)</td>
            <td>25.81</td>
            <td><b>45.44</td>
            <td>24.7</td>
        </tr>
        <tr>
            <td>Tool use</td>
            <td>BFCL AST (avg)</td>
            <td>48.4</td>
            <td>74.2</td>
            <td><b>86.3</td>
        </tr>
        <tr>
            <td rowspan="2">Code</td>
            <td>EvalPlus (0-shot) (avg)</td>
            <td>69.4</td>
            <td>58.9</td>
            <td><b>74.7</b></td>
        </tr>
        <tr>
            <td>Multipl-E (0-shot) (avg)</td>
            <td>-</td>
            <td>34.5</td>
            <td><b>45.8</b></td>
        </tr>      
    </tbody>
</table>

## Technical Report

Coming soon....

## Citation
If Falcon3 family were helpful in your work, feel free to give us a cite.

```
@misc{Falcon3,
    title = {The Falcon 3 family of Open Models},
    author = {TII Team},
    month = {December},
    year = {2024}
}
```