File size: 5,097 Bytes
1a38b01
2721bc1
 
 
 
 
 
 
1a38b01
 
2721bc1
1a38b01
2721bc1
1a38b01
2721bc1
 
 
1a38b01
2721bc1
1a38b01
 
2721bc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
language:
- en
- fr
- es
- pt
tags:
- falcon3
---

# Falcon3-7B-Base

**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.

This repository contains the **Falcon3-3B-Base**. It achieves strong results on reasoning, language understanding, instruction following, code and mathematics tasks.
Falcon3-3B-Base supports 4 languages (english, french, spanish, portuguese) and a context length up to 8K.
Falcon3-3B-Base pruned (depth + width) from Falcon3-7B-Base, was effeciently trained on only 100 GT using a knowledge distillation objective.

⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.** 

## Model Details
- Architecture
  - Transformer based causal decoder only architecture
  - 22 decoder blocks
  - Grouped query attention (GQA) for faster inference: 12 query heads and 4 KV heads
  - Wider head dimension: 256
  - High RoPE value to support long context understanding: 1000042
  - 8k context length
  - 131k vocab size
- Pruned and Healed from Falcon3-7B-Base on only 100 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 2048 H100 GPU chips
- Supports EN, FR, ES, PT
- Developed by [Technology Innovation Institute](https://www.tii.ae)
- License: TII Falcon-LLM License 2.0
- Model Release Date: December 2024


## Getting started

<details>
<summary> Click to expand </summary>

```python
import torch
from transformers import pipeline

pipe = pipeline(
    "text-generation", 
    model="tiiuae/Falcon3-3B-Base", 
    torch_dtype=torch.bfloat16, 
    device_map="auto"
)
response = pipe("Question: How many hours in one day? Answer: ")
print(response[0]['generated_text'])
```

</details>

<br>

# Benchmarks
We report in the following table our internal pipeline benchmarks:



<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
    <colgroup>
        <col style="width: 10%;">
        <col style="width: 10%;">
        <col style="width: 7%;">
        <col style="width: 7%;">
        <col style="width: 7%;">
        <col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
    </colgroup>
    <thead>
        <tr>
            <th>Category</th>
            <th>Benchmark</th>
            <th>Llama3.2-3B</th>
            <th>Qwen2.5-3B</th>
            <th>Minitron-4B</th>
            <th>Falcon3-3B-Base</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td rowspan="3">General</td>
            <td>MMLU (5-shot)</td>
            <td>56.1</td>
            <td>65.6</td>
            <td>58.6</td>
            <td>55.5</td>
        </tr>
        <tr>
            <td>MMLU-PRO (5-shot)</td>
            <td>24.9</td>
            <td>31.99</td>
            <td>26.21</td>
            <td>28.77</td>
        </tr>
        <tr>
            <td>IFEval</td>
            <td>12.83</td>
            <td>27</td>
            <td>22.81</td>
            <td>27.67</td>
        </tr>
        <tr>
            <td rowspan="2">Math</td>
            <td>GSM8K (5-shot)</td>
            <td>26.68</td>
            <td>68.99</td>
            <td>25.7</td>
            <td>63.91</td>
        </tr>
        <tr>
            <td>MATH(4-shot)</td>
            <td>1.39</td>
            <td>8.43</td>
            <td>1.73</td>
            <td>9.38</td>
        </tr>
        <tr>
            <td rowspan="4">Reasoning</td>
            <td>Arc Challenge (25-shot)</td>
            <td>50.76</td>
            <td>55.54</td>
            <td>50.34</td>
            <td>54.86</td>
        </tr>
        <tr>
            <td>GPQA (0-shot)</td>
            <td>27.49</td>
            <td>27.53</td>
            <td>38.6</td>
            <td>31.15</td>
        </tr>
        <tr>
            <td>MUSR (0-shot)</td>
            <td>35.24</td>
            <td>43.03</td>
            <td>42.13</td>
            <td>37.5</td>
        </tr>
        <tr>
            <td>BBH (3-shot)</td>
            <td>38.59</td>
            <td>46.12</td>
            <td>40.85</td>
            <td>44.23</td>
        </tr>
        <tr>
            <td rowspan="4">CommonSense Understanding</td>
            <td>PIQA (0-shot)</td>
            <td>77.42</td>
            <td>78.89</td>
            <td>78.29</td>
            <td>75.62</td>
        </tr>
        <tr>
            <td>SciQ (0-shot)</td>
            <td>92.7</td>
            <td>95.6</td>
            <td>96.1</td>
            <td>93.1</td>
        </tr>
        <tr>
            <td>Winogrande (0-shot)</td>
            <td>69.69</td>
            <td>68.82</td>
            <td>68.35</td>
            <td>64.64</td>
        </tr>
        <tr>
            <td>OpenbookQA (0-shot)</td>
            <td>43.2</td>
            <td>42.2</td>
            <td>43</td>
            <td>39.4</td>
        </tr>
    </tbody>
</table>


# Citation
If Falcon3 family were helpful to your work, feel free to give us a cite.

```
@misc{Falcon3,
    title = {The Falcon 3 family of Open Models},
    author = {TII Team},
    month = {December},
    year = {2024}
}
```