GGUF
English
Inference Endpoints
ybelkada commited on
Commit
c6e94d2
·
verified ·
1 Parent(s): b785590

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +191 -5
README.md CHANGED
@@ -1,5 +1,191 @@
1
- ---
2
- license: other
3
- license_name: falcon-mamba-license
4
- license_link: https://falconllm.tii.ae/falcon-mamba-7b-terms-and-conditions.html
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: falcon-mamba-license
4
+ license_link: https://falconllm.tii.ae/falcon-mamba-7b-terms-and-conditions.html
5
+ base_model: tiiuae/falcon-mamba-7b
6
+ language:
7
+ - en
8
+ datasets:
9
+ - tiiuae/falcon-refinedweb
10
+ ---
11
+
12
+ <img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/falcon_mamba/thumbnail.png" alt="drawing" width="800"/>
13
+
14
+ **GGUF quantization of [`falcon-mamba-7b`](https://huggingface.co/tiiuae/falcon-mamba-7b) in the formats `F16` - `BF16` and `Q8_0`**
15
+
16
+ # Table of Contents
17
+
18
+ 0. [TL;DR](#TL;DR)
19
+ 1. [Model Details](#model-details)
20
+ 2. [Usage](#usage)
21
+ 3. [Training Details](#training-details)
22
+ 4. [Evaluation](#evaluation)
23
+
24
+
25
+ # TL;DR
26
+
27
+ # Model Details
28
+
29
+ ## Model Description
30
+
31
+ - **Developed by:** [https://www.tii.ae](https://www.tii.ae)
32
+ - **Model type:** Causal decoder-only
33
+ - **Architecture:** Mamba
34
+ - **Language(s) (NLP):** Mainly English
35
+ - **License:** TII Falcon-Mamba License 2.0
36
+
37
+ <br>
38
+
39
+ # Usage
40
+
41
+ Refer to the documentation of [`llama.cpp`](https://github.com/ggerganov/llama.cpp) to understand how to run this model locally on your machine.
42
+
43
+ Download the GGUF weights with the command below:
44
+
45
+ ```bash
46
+ huggingface-cli download tiiuae/falcon-mamba-7b-instruct-GGUF --include FILENAME --local-dir ./
47
+ ```
48
+
49
+ with `FILENAME` being the filename you want to download locally.
50
+
51
+ # Training Details
52
+
53
+ ## Training Data
54
+
55
+ Falcon-Mamba has been trained with ~ 5,500 GT mainly coming from [Refined-Web](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a large volume web-only dataset filtered and deduplicated.
56
+ Similar to the others [Falcon](https://huggingface.co/tiiuae/falcon-11B) suite models, Falcon-Mamba has been trained leveraging a multi-stage training strategy to increase the context-length from 2,048 to 8,192.
57
+ Moreover, inspired by the concept of Curriculum Learning, we carefully selected data mixtures throughout the training stages, considering both data diversity and complexity.
58
+ Note that at inference the context-length is not relevant as the Mamba architecture has no limit on long range dependency.
59
+ At the last training stage, small portion of high-quality curated data was used to further enhance performance.
60
+
61
+ Overall, the data sources included RefinedWeb-English, high quality technical data, code data and math data extracted from public sources.
62
+ In particular, we used samples coming from [Fineweb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu) during our last training stage.
63
+
64
+ The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7B)/[11B](https://huggingface.co/tiiuae/falcon-11B) tokenizer.
65
+
66
+ ## Training Procedure
67
+ Falcon-Mamba-7B was trained on 256 H100 80GB GPUs for the majority of the training, using a 3D parallelism strategy (TP=1, PP=1, DP=256) combined with ZeRO.
68
+
69
+ ### Training Hyperparameters
70
+
71
+ | **Hyperparameter** | **Value** | **Comment** |
72
+ |--------------------|------------|-------------------------------------------|
73
+ | Precision | `bfloat16` | |
74
+ | Optimizer | AdamW | |
75
+ | Max learning rate | 6.4e-4 | Following a WSD (warmup-stable-decay) learning rate schedule |
76
+ | Weight decay | 1e-1 | |
77
+ | Batch size | 2048 | |
78
+
79
+
80
+ The model was trained AdamW optimizer, WSD (warmup-stable-decay) learning rate schedule, and a batch size rampup from \\(b_{\mathrm{min}}=128\\) to \\(b_{\mathrm{max}}=2048\\) during first 50 GT of training.
81
+ In the stable phase we used maximal learning rate \\(\eta_{\mathrm{max}}=6.4 \times 10^{-4}\\), and decayed it to the minimal value \\(\eta_{\mathrm{min}}=\frac{\eta_{\mathrm{max}}}{256}\\) with exponential schedule over 500 GT.
82
+ Also, we applied *BatchScaling* during the rampup — rescaling learning rate \\(\eta\\) so that the Adam noise temperature \\(T_{\mathrm{noise}}\equiv\frac{\eta}{\sqrt{b}}\\) is kept constant.
83
+
84
+ ### Speeds, Sizes, Times
85
+
86
+ The model training took roughly two months.
87
+
88
+ <br>
89
+
90
+ # Evaluation
91
+
92
+ ## Benchmarks
93
+
94
+ We evaluate our model on all benchmarks of the new leaderboard's version using the `lm-evaluation-harness` package, and then normalize the evaluation results with HuggingFace score normalization.
95
+
96
+
97
+ | `model name` |`IFEval`| `BBH` |`MATH LvL5`| `GPQA`| `MUSR`|`MMLU-PRO`|`Average`|
98
+ |:--------------------------|:------:|:-----:|:---------:|:-----:|:-----:|:--------:|:-------:|
99
+ | ***Pure SSM models*** | | | | | | | |
100
+ | `FalconMamba-7B` | 33.36 | 19.88 | 3.63 |8.05 |10.86 | 14.47 |**15.04**|
101
+ | `TRI-ML/mamba-7b-rw`<sup>*</sup>| 22.46 | 6.71 | 0.45 | 1.12 | 5.51 | 1.69 | 6.25 |
102
+ |***Hybrid SSM-attention models*** | | | | | | |
103
+ |`recurrentgemma-9b` | 30.76 | 14.80 | 4.83 | 4.70 | 6.60 | 17.88 | 13.20 |
104
+ | `Zyphra/Zamba-7B-v1`<sup>*</sup> | 24.06 | 21.12 | 3.32 | 3.03 | 7.74 | 16.02 | 12.55 |
105
+ |***Transformer models*** | | | | | | | |
106
+ | `Falcon2-11B` | 32.61 | 21.94 | 2.34 | 2.80 | 7.53 | 15.44 | 13.78 |
107
+ | `Meta-Llama-3-8B` | 14.55 | 24.50 | 3.25 | 7.38 | 6.24 | 24.55 | 13.41 |
108
+ | `Meta-Llama-3.1-8B` | 12.70 | 25.29 | 4.61 | 6.15 | 8.98 | 24.95 | 13.78 |
109
+ | `Mistral-7B-v0.1` | 23.86 | 22.02 | 2.49 | 5.59 | 10.68 | 22.36 | 14.50 |
110
+ | `Mistral-Nemo-Base-2407 (12B)` | 16.83 | 29.37 | 4.98 | 5.82 | 6.52 | 27.46 | 15.08 |
111
+ | `gemma-7B` | 26.59 | 21.12 | 6.42 | 4.92 | 10.98 | 21.64 |**15.28**|
112
+
113
+
114
+ Also, we evaluate our model on the benchmarks of the first leaderboard using `lighteval`.
115
+
116
+
117
+ | `model name` |`ARC`|`HellaSwag` |`MMLU` |`Winogrande`|`TruthfulQA`|`GSM8K`|`Average` |
118
+ |:-----------------------------|:------:|:---------:|:-----:|:----------:|:----------:|:-----:|:----------------:|
119
+ | ***Pure SSM models*** | | | | | | | |
120
+ | `FalconMamba-7B`<sup>*</sup> | 62.03 | 80.82 | 62.11 | 73.64 | 53.42 | 52.54 | **64.09** |
121
+ | `TRI-ML/mamba-7b-rw`<sup>*</sup> | 51.25 | 80.85 | 33.41 | 71.11 | 32.08 | 4.70 | 45.52 |
122
+ |***Hybrid SSM-attention models***| | | | | | | |
123
+ | `recurrentgemma-9b`<sup>**</sup> |52.00 | 80.40 | 60.50 | 73.60 | 38.60 | 42.60 | 57.95 |
124
+ | `Zyphra/Zamba-7B-v1`<sup>*</sup> | 56.14 | 82.23 | 58.11 | 79.87 | 52.88 | 30.78 | 60.00 |
125
+ |***Transformer models*** | | | | | | | |
126
+ | `Falcon2-11B` | 59.73 | 82.91 | 58.37 | 78.30 | 52.56 | 53.83 | **64.28** |
127
+ | `Meta-Llama-3-8B` | 60.24 | 82.23 | 66.70 | 78.45 | 42.93 | 45.19 | 62.62 |
128
+ | `Meta-Llama-3.1-8B` | 58.53 | 82.13 | 66.43 | 74.35 | 44.29 | 47.92 | 62.28 |
129
+ | `Mistral-7B-v0.1` | 59.98 | 83.31 | 64.16 | 78.37 | 42.15 | 37.83 | 60.97 |
130
+ | `gemma-7B` | 61.09 | 82.20 | 64.56 | 79.01 | 44.79 | 50.87 | 63.75 |
131
+
132
+ Mostly, we took evaluation results from both leaderboards. For the models marked by *star* we evaluated the tasks internally, while for the models marked by two *stars* the results were taken from paper or model card.
133
+
134
+ ## Throughput
135
+
136
+ This model can achieve comparable throughput and performance compared to other transformer based models that use optimized kernels such as Flash Attention 2. Make sure to install the optimized Mamba kernels with the following commands:
137
+
138
+ ```bash
139
+ pip install "causal-conv1d>=1.4.0" mamba-ssm
140
+ ```
141
+
142
+ Refer to our [FalconMamba blogpost](https://huggingface.co/blog/falconmamba) for more details about performance evaluation.
143
+
144
+
145
+ <br>
146
+
147
+ # Technical Specifications
148
+
149
+ ## Model Architecture and Objective
150
+
151
+ Falcon-Mamba-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
152
+
153
+ The model is based on the Mamba architecture ([Gu et al., 2023](https://arxiv.org/abs/2312.00752)).
154
+
155
+ | **Hyperparameter** | **Value** | **Comment** |
156
+ |--------------------|-----------|----------------------------------------|
157
+ | Layers | 64 | Number of layers |
158
+ | `d_model` | 4096 | Hidden dimension |
159
+ | `d_state` | 16 | The SSM state dimension |
160
+ | Vocabulary | 65024 | Vocabulary Size |
161
+ | Sequence length | 8192 | During the last training stages |
162
+
163
+ ## Compute Infrastructure
164
+
165
+ ### Hardware
166
+
167
+ Falcon-Mamba-7B was trained on AWS SageMaker, using on average 256 H100 80GB GPUs in 32 p5 instances.
168
+
169
+ ### Software
170
+
171
+ Falcon-Mamba-7B was trained on an internal distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO, high-performance Triton kernels.
172
+
173
+ <br>
174
+
175
+ # Citation
176
+
177
+ *Paper coming soon* 😊.
178
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
179
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/tiiuae__falcon-mamba-7b-details)
180
+
181
+ | Metric |Value|
182
+ |-------------------|----:|
183
+ |Avg. |15.04|
184
+ |IFEval (0-Shot) |33.36|
185
+ |BBH (3-Shot) |19.88|
186
+ |MATH Lvl 5 (4-Shot)| 3.63|
187
+ |GPQA (0-shot) | 8.05|
188
+ |MuSR (0-shot) |10.86|
189
+ |MMLU-PRO (5-shot) |14.47|
190
+
191
+