rwightman HF staff commited on
Commit
b01a920
·
verified ·
1 Parent(s): 383ef54
Files changed (4) hide show
  1. README.md +139 -0
  2. config.json +35 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - timm
5
+ library_name: timm
6
+ license: apache-2.0
7
+ datasets:
8
+ - imagenet-1k
9
+ ---
10
+ # Model card for test_efficientnet.r160_in1k
11
+
12
+ A very small test EfficientNet image classification model for testing and sanity checks. Trained on ImageNet-1k by Ross Wightman.
13
+
14
+ ## Model Details
15
+ - **Model Type:** Image classification / feature backbone
16
+ - **Model Stats:**
17
+ - Params (M): 0.4
18
+ - GMACs: 0.1
19
+ - Activations (M): 0.6
20
+ - Image size: 160 x 160
21
+ - **Dataset:** ImageNet-1k
22
+ - **Papers:**
23
+ - PyTorch Image Models: https://github.com/huggingface/pytorch-image-models
24
+ - **Original:** https://github.com/huggingface/pytorch-image-models
25
+
26
+ ## Model Usage
27
+ ### Image Classification
28
+ ```python
29
+ from urllib.request import urlopen
30
+ from PIL import Image
31
+ import timm
32
+
33
+ img = Image.open(urlopen(
34
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
35
+ ))
36
+
37
+ model = timm.create_model('test_efficientnet.r160_in1k', pretrained=True)
38
+ model = model.eval()
39
+
40
+ # get model specific transforms (normalization, resize)
41
+ data_config = timm.data.resolve_model_data_config(model)
42
+ transforms = timm.data.create_transform(**data_config, is_training=False)
43
+
44
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
45
+
46
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
47
+ ```
48
+
49
+ ### Feature Map Extraction
50
+ ```python
51
+ from urllib.request import urlopen
52
+ from PIL import Image
53
+ import timm
54
+
55
+ img = Image.open(urlopen(
56
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
57
+ ))
58
+
59
+ model = timm.create_model(
60
+ 'test_efficientnet.r160_in1k',
61
+ pretrained=True,
62
+ features_only=True,
63
+ )
64
+ model = model.eval()
65
+
66
+ # get model specific transforms (normalization, resize)
67
+ data_config = timm.data.resolve_model_data_config(model)
68
+ transforms = timm.data.create_transform(**data_config, is_training=False)
69
+
70
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
71
+
72
+ for o in output:
73
+ # print shape of each feature map in output
74
+ # e.g.:
75
+ # torch.Size([1, 16, 80, 80])
76
+ # torch.Size([1, 24, 40, 40])
77
+ # torch.Size([1, 32, 20, 20])
78
+ # torch.Size([1, 48, 10, 10])
79
+ # torch.Size([1, 64, 5, 5])
80
+
81
+ print(o.shape)
82
+ ```
83
+
84
+ ### Image Embeddings
85
+ ```python
86
+ from urllib.request import urlopen
87
+ from PIL import Image
88
+ import timm
89
+
90
+ img = Image.open(urlopen(
91
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
92
+ ))
93
+
94
+ model = timm.create_model(
95
+ 'test_efficientnet.r160_in1k',
96
+ pretrained=True,
97
+ num_classes=0, # remove classifier nn.Linear
98
+ )
99
+ model = model.eval()
100
+
101
+ # get model specific transforms (normalization, resize)
102
+ data_config = timm.data.resolve_model_data_config(model)
103
+ transforms = timm.data.create_transform(**data_config, is_training=False)
104
+
105
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
106
+
107
+ # or equivalently (without needing to set num_classes=0)
108
+
109
+ output = model.forward_features(transforms(img).unsqueeze(0))
110
+ # output is unpooled, a (1, 256, 5, 5) shaped tensor
111
+
112
+ output = model.forward_head(output, pre_logits=True)
113
+ # output is a (1, num_features) shaped tensor
114
+ ```
115
+
116
+ ## Model Comparison
117
+ ### By Top-1
118
+
119
+ |model |top1 |top1_err|top5 |top5_err|param_count|img_size|crop_pct|
120
+ |----------------------------|------|--------|------|--------|-----------|--------|--------|
121
+ |test_efficientnet.r160_in1k |47.156|52.844 |71.726|28.274 |0.36 |192 |1.0 |
122
+ |test_byobnet.r160_in1k |46.698|53.302 |71.674|28.326 |0.46 |192 |1.0 |
123
+ |test_efficientnet.r160_in1k |46.426|53.574 |70.928|29.072 |0.36 |160 |0.875 |
124
+ |test_byobnet.r160_in1k |45.378|54.622 |70.572|29.428 |0.46 |160 |0.875 |
125
+ |test_vit.untrained.r160_in1k|42.0 |58.0 |68.664|31.336 |0.37 |192 |1.0 |
126
+ |test_vit.untrained.r160_in1k|40.822|59.178 |67.212|32.788 |0.37 |160 |0.875 |
127
+
128
+ ## Citation
129
+ ```bibtex
130
+ @misc{rw2019timm,
131
+ author = {Ross Wightman},
132
+ title = {PyTorch Image Models},
133
+ year = {2019},
134
+ publisher = {GitHub},
135
+ journal = {GitHub repository},
136
+ doi = {10.5281/zenodo.4414861},
137
+ howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
138
+ }
139
+ ```
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "test_efficientnet",
3
+ "num_classes": 1000,
4
+ "num_features": 256,
5
+ "pretrained_cfg": {
6
+ "tag": "r160_in1k",
7
+ "custom_load": false,
8
+ "input_size": [
9
+ 3,
10
+ 160,
11
+ 160
12
+ ],
13
+ "fixed_input_size": false,
14
+ "interpolation": "bicubic",
15
+ "crop_pct": 0.875,
16
+ "crop_mode": "center",
17
+ "mean": [
18
+ 0.485,
19
+ 0.456,
20
+ 0.406
21
+ ],
22
+ "std": [
23
+ 0.229,
24
+ 0.224,
25
+ 0.225
26
+ ],
27
+ "num_classes": 1000,
28
+ "pool_size": [
29
+ 5,
30
+ 5
31
+ ],
32
+ "first_conv": "conv_stem",
33
+ "classifier": "classifier"
34
+ }
35
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31afcf8fcddb526b806bb161d62685d05ff8583d5a9a0162f6c62cd94621fc75
3
+ size 1442648
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f8a87a9cfb5afda09e84346ebcd2a1bb40e2a5ca1078d47eb7b039d9dce0fef
3
+ size 1464822