upload python file
Browse files- generate_model.py +4 -3
- modeling_tinyllava_phi.py +419 -0
generate_model.py
CHANGED
@@ -649,7 +649,8 @@ def generate(
|
|
649 |
outputs = outputs.strip()
|
650 |
|
651 |
return outputs, generation_time
|
652 |
-
|
|
|
653 |
"""Argument Parser"""
|
654 |
|
655 |
class KwargsParser(argparse.Action):
|
@@ -674,7 +675,7 @@ def tinyllava_elm_generate_parser():
|
|
674 |
converted_v = kwarg_v
|
675 |
getattr(namespace, self.dest)[kwarg_k] = converted_v
|
676 |
|
677 |
-
parser = argparse.ArgumentParser('TinyLLaVA-
|
678 |
parser.add_argument(
|
679 |
'--model',
|
680 |
dest='model',
|
@@ -704,7 +705,7 @@ def tinyllava_elm_generate_parser():
|
|
704 |
|
705 |
|
706 |
if __name__ == '__main__':
|
707 |
-
args =
|
708 |
|
709 |
output_text, genertaion_time = generate(
|
710 |
prompt=args.prompt,
|
|
|
649 |
outputs = outputs.strip()
|
650 |
|
651 |
return outputs, generation_time
|
652 |
+
|
653 |
+
def tinyllava_phi_generate_parser():
|
654 |
"""Argument Parser"""
|
655 |
|
656 |
class KwargsParser(argparse.Action):
|
|
|
675 |
converted_v = kwarg_v
|
676 |
getattr(namespace, self.dest)[kwarg_k] = converted_v
|
677 |
|
678 |
+
parser = argparse.ArgumentParser('TinyLLaVA-Phi Generate Module')
|
679 |
parser.add_argument(
|
680 |
'--model',
|
681 |
dest='model',
|
|
|
705 |
|
706 |
|
707 |
if __name__ == '__main__':
|
708 |
+
args = tinyllava_phi_generate_parser()
|
709 |
|
710 |
output_text, genertaion_time = generate(
|
711 |
prompt=args.prompt,
|
modeling_tinyllava_phi.py
ADDED
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import List, Optional, Tuple, Union
|
3 |
+
import ast
|
4 |
+
import re
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.utils.checkpoint
|
8 |
+
from torch import nn, Tensor
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
from transformers import PreTrainedModel
|
12 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
13 |
+
from transformers.generation.utils import GenerateOutput
|
14 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor, SiglipVisionModel, SiglipImageProcessor
|
15 |
+
|
16 |
+
from .configuration import TinyLlavaConfig, IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
17 |
+
|
18 |
+
from transformers import AutoConfig, AutoModelForCausalLM, PhiForCausalLM
|
19 |
+
|
20 |
+
# from tinyllava.utils.data_utils import get_value_from_kwargs
|
21 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
22 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
23 |
+
|
24 |
+
LOGDIR = "."
|
25 |
+
#
|
26 |
+
# For licensing see accompanying LICENSE file.
|
27 |
+
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
28 |
+
#
|
29 |
+
from transformers.utils import logging
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
# this import has to be relative, otherwise, when setting trust_remote_code=True
|
34 |
+
# huggingface transformers won't be able to load the module correctly
|
35 |
+
from numbers import Number
|
36 |
+
from typing import List, Optional, Union
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
ACT_TYPE = {
|
42 |
+
'relu': nn.ReLU,
|
43 |
+
'gelu': nn.GELU
|
44 |
+
}
|
45 |
+
|
46 |
+
class Connector(nn.Module):
|
47 |
+
def __init__(self, config=None):
|
48 |
+
super().__init__()
|
49 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', config.connector_type)
|
50 |
+
act_type = config.connector_type.split('_')[-1]
|
51 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
52 |
+
modules = [nn.Linear(config.vision_hidden_size, config.hidden_size)]
|
53 |
+
for _ in range(1, mlp_depth):
|
54 |
+
modules.append(ACT_TYPE[act_type]())
|
55 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
56 |
+
|
57 |
+
self._connector = nn.Sequential(*modules)
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
return self._connector(x)
|
61 |
+
|
62 |
+
class VisionTower(nn.Module):
|
63 |
+
def __init__(self, cfg, model_name_or_path = 'clip'):
|
64 |
+
super().__init__()
|
65 |
+
if 'clip' in model_name_or_path:
|
66 |
+
self._vision_tower = CLIPVisionModel(cfg)
|
67 |
+
self._image_processor = CLIPImageProcessor.from_pretrained(cfg.model_name_or_path)
|
68 |
+
else:
|
69 |
+
self._vision_tower = SiglipVisionModel(cfg)
|
70 |
+
self._image_processor = SiglipImageProcessor.from_pretrained(cfg.model_name_or_path)
|
71 |
+
|
72 |
+
self.config = cfg
|
73 |
+
|
74 |
+
def forward(self, x, **kwargs):
|
75 |
+
image_features = self._vision_tower(x, output_hidden_states=True)
|
76 |
+
image_features = image_features.hidden_states[kwargs.get('vision_feature_layer', -2)]
|
77 |
+
|
78 |
+
if kwargs.get('vision_feature_select_strategy', 'patch') == 'patch':
|
79 |
+
image_features = image_features[:, 1:]
|
80 |
+
elif kwargs.get('vision_feature_select_strategy', 'patch') == 'cls_patch':
|
81 |
+
image_features = image_features
|
82 |
+
else:
|
83 |
+
raise ValueError(f"Unexpected select feature: {kwargs.get('vision_feature_select_strategy')}")
|
84 |
+
|
85 |
+
return image_features
|
86 |
+
|
87 |
+
@property
|
88 |
+
def vision_tower(self):
|
89 |
+
return self._vision_tower
|
90 |
+
|
91 |
+
@vision_tower.setter
|
92 |
+
def vision_tower(self, vision_tower):
|
93 |
+
self._vision_tower = vision_tower
|
94 |
+
|
95 |
+
def get_value_from_kwargs(kwargs, name):
|
96 |
+
if name in kwargs:
|
97 |
+
return kwargs.pop(name)
|
98 |
+
else:
|
99 |
+
return None
|
100 |
+
|
101 |
+
|
102 |
+
class TinyLlavaPreTrainedModel(PreTrainedModel):
|
103 |
+
config_class = TinyLlavaConfig
|
104 |
+
base_model_prefix = "model"
|
105 |
+
supports_gradient_checkpointing = True
|
106 |
+
_no_split_modules = ["LlavaVisionAttention"]
|
107 |
+
_skip_keys_device_placement = "past_key_values"
|
108 |
+
_supports_flash_attn_2 = True
|
109 |
+
|
110 |
+
def _init_weights(self, module):
|
111 |
+
std = (
|
112 |
+
self.config.initializer_range
|
113 |
+
if hasattr(self.config, "initializer_range")
|
114 |
+
else self.config.text_config.initializer_range
|
115 |
+
)
|
116 |
+
|
117 |
+
if hasattr(module, "class_embedding"):
|
118 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
119 |
+
|
120 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
121 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
122 |
+
if module.bias is not None:
|
123 |
+
module.bias.data.zero_()
|
124 |
+
elif isinstance(module, nn.Embedding):
|
125 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
126 |
+
if module.padding_idx is not None:
|
127 |
+
module.weight.data[module.padding_idx].zero_()
|
128 |
+
|
129 |
+
@property
|
130 |
+
def _supports_sdpa(self):
|
131 |
+
return self.language_model._supports_sdpa
|
132 |
+
|
133 |
+
|
134 |
+
class TinyLlavaForConditionalGeneration(TinyLlavaPreTrainedModel):
|
135 |
+
def __init__(self, config: TinyLlavaConfig):
|
136 |
+
|
137 |
+
super().__init__(config)
|
138 |
+
|
139 |
+
self.language_model = PhiForCausalLM(config.text_config)
|
140 |
+
self.vision_tower = VisionTower(config.vision_config, config.vision_model_name_or_path)
|
141 |
+
self.connector = Connector(config)
|
142 |
+
self.post_init()
|
143 |
+
|
144 |
+
|
145 |
+
def get_input_embeddings(self):
|
146 |
+
return self.language_model.get_input_embeddings()
|
147 |
+
|
148 |
+
def set_input_embeddings(self, value):
|
149 |
+
self.language_model.set_input_embeddings(value)
|
150 |
+
|
151 |
+
def get_output_embeddings(self):
|
152 |
+
return self.language_model.get_output_embeddings()
|
153 |
+
|
154 |
+
def set_output_embeddings(self, new_embeddings):
|
155 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
156 |
+
|
157 |
+
def set_decoder(self, decoder):
|
158 |
+
self.language_model.set_decoder(decoder)
|
159 |
+
|
160 |
+
def get_decoder(self):
|
161 |
+
return self.language_model.get_decoder()
|
162 |
+
|
163 |
+
def tie_weights(self):
|
164 |
+
return self.language_model.tie_weights()
|
165 |
+
|
166 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
167 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
168 |
+
# update vocab size
|
169 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
170 |
+
self.config.vocab_size = model_embeds.num_embeddings
|
171 |
+
self.vocab_size = model_embeds.num_embeddings
|
172 |
+
return model_embeds
|
173 |
+
|
174 |
+
|
175 |
+
def forward(
|
176 |
+
self,
|
177 |
+
input_ids: torch.LongTensor = None,
|
178 |
+
attention_mask: Optional[torch.Tensor] = None,
|
179 |
+
position_ids: Optional[torch.LongTensor] = None,
|
180 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
181 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
182 |
+
labels: Optional[torch.LongTensor] = None,
|
183 |
+
use_cache: Optional[bool] = None,
|
184 |
+
output_attentions: Optional[bool] = None,
|
185 |
+
output_hidden_states: Optional[bool] = None,
|
186 |
+
images: Optional[torch.FloatTensor] = None,
|
187 |
+
image_sizes: Optional[List[List[int]]] = None,
|
188 |
+
return_dict: Optional[bool] = None,
|
189 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
190 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
191 |
+
if inputs_embeds is None:
|
192 |
+
(
|
193 |
+
input_ids,
|
194 |
+
position_ids,
|
195 |
+
attention_mask,
|
196 |
+
past_key_values,
|
197 |
+
inputs_embeds,
|
198 |
+
labels
|
199 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
200 |
+
input_ids,
|
201 |
+
position_ids,
|
202 |
+
attention_mask,
|
203 |
+
past_key_values,
|
204 |
+
labels,
|
205 |
+
images,
|
206 |
+
image_sizes
|
207 |
+
)
|
208 |
+
return self.language_model.forward(
|
209 |
+
input_ids=input_ids,
|
210 |
+
attention_mask=attention_mask,
|
211 |
+
position_ids=position_ids,
|
212 |
+
past_key_values=past_key_values,
|
213 |
+
inputs_embeds=inputs_embeds,
|
214 |
+
labels=labels,
|
215 |
+
use_cache=use_cache,
|
216 |
+
output_attentions=output_attentions,
|
217 |
+
output_hidden_states=output_hidden_states,
|
218 |
+
return_dict=return_dict
|
219 |
+
)
|
220 |
+
|
221 |
+
@torch.no_grad()
|
222 |
+
def generate(
|
223 |
+
self,
|
224 |
+
inputs: Optional[torch.Tensor] = None,
|
225 |
+
images: Optional[torch.Tensor] = None,
|
226 |
+
image_sizes: Optional[torch.Tensor] = None,
|
227 |
+
**kwargs,
|
228 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
229 |
+
position_ids = kwargs.pop("position_ids", None)
|
230 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
231 |
+
if "inputs_embeds" in kwargs:
|
232 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
233 |
+
|
234 |
+
if images is not None:
|
235 |
+
(
|
236 |
+
inputs,
|
237 |
+
position_ids,
|
238 |
+
attention_mask,
|
239 |
+
_,
|
240 |
+
inputs_embeds,
|
241 |
+
_
|
242 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
243 |
+
inputs,
|
244 |
+
position_ids,
|
245 |
+
attention_mask,
|
246 |
+
None,
|
247 |
+
None,
|
248 |
+
images,
|
249 |
+
image_sizes=image_sizes
|
250 |
+
)
|
251 |
+
else:
|
252 |
+
inputs_embeds = self.language_model.get_input_embeddings()(inputs)
|
253 |
+
|
254 |
+
return self.language_model.generate(
|
255 |
+
position_ids=position_ids,
|
256 |
+
attention_mask=attention_mask,
|
257 |
+
inputs_embeds=inputs_embeds,
|
258 |
+
**kwargs
|
259 |
+
)
|
260 |
+
|
261 |
+
def encode_images(self, images):
|
262 |
+
kwargs = {}
|
263 |
+
kwargs['vision_feature_layer'] = self.config.vision_feature_layer
|
264 |
+
kwargs['vision_feature_select_strategy'] = self.config.vision_feature_select_strategy
|
265 |
+
images = images.to(device=self.device, dtype=self.dtype)
|
266 |
+
image_features = self.vision_tower(images, **kwargs)
|
267 |
+
image_features = self.connector(image_features)
|
268 |
+
return image_features
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
|
273 |
+
inputs_embeds=None, **kwargs):
|
274 |
+
images = kwargs.pop("images", None)
|
275 |
+
image_sizes = kwargs.pop("image_sizes", None)
|
276 |
+
inputs = self.language_model.prepare_inputs_for_generation(
|
277 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
278 |
+
)
|
279 |
+
if images is not None:
|
280 |
+
inputs['images'] = images
|
281 |
+
if image_sizes is not None:
|
282 |
+
inputs['image_sizes'] = image_sizes
|
283 |
+
return inputs
|
284 |
+
|
285 |
+
def prepare_inputs_labels_for_multimodal(
|
286 |
+
self, input_ids, position_ids, attention_mask, past_key_values, labels,
|
287 |
+
images, image_sizes=None
|
288 |
+
):
|
289 |
+
vision_tower = self.vision_tower
|
290 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
291 |
+
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
292 |
+
|
293 |
+
|
294 |
+
image_features = self.encode_images(images)
|
295 |
+
|
296 |
+
# TODO: image start / end is not implemented here to support pretraining.
|
297 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False):
|
298 |
+
raise NotImplementedError
|
299 |
+
|
300 |
+
# Let's just add dummy tensors if they do not exist,
|
301 |
+
# it is a headache to deal with None all the time.
|
302 |
+
# But it is not ideal, and if you have a better idea,
|
303 |
+
# please open an issue / submit a PR, thanks.
|
304 |
+
_labels = labels
|
305 |
+
_position_ids = position_ids
|
306 |
+
_attention_mask = attention_mask
|
307 |
+
if attention_mask is None:
|
308 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
309 |
+
else:
|
310 |
+
attention_mask = attention_mask.bool()
|
311 |
+
if position_ids is None:
|
312 |
+
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
313 |
+
if labels is None:
|
314 |
+
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
315 |
+
|
316 |
+
# remove the padding using attention_mask -- FIXME
|
317 |
+
_input_ids = input_ids
|
318 |
+
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
319 |
+
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
320 |
+
|
321 |
+
new_input_embeds = []
|
322 |
+
new_labels = []
|
323 |
+
cur_image_idx = 0
|
324 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
325 |
+
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
326 |
+
if num_images == 0:
|
327 |
+
cur_image_features = image_features[cur_image_idx]
|
328 |
+
cur_input_embeds_1 = self.language_model.get_input_embeddings()(cur_input_ids)
|
329 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
330 |
+
new_input_embeds.append(cur_input_embeds)
|
331 |
+
new_labels.append(labels[batch_idx])
|
332 |
+
cur_image_idx += 1
|
333 |
+
continue
|
334 |
+
|
335 |
+
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
|
336 |
+
cur_input_ids_noim = []
|
337 |
+
cur_labels = labels[batch_idx]
|
338 |
+
cur_labels_noim = []
|
339 |
+
for i in range(len(image_token_indices) - 1):
|
340 |
+
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
341 |
+
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
342 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
343 |
+
cur_input_embeds = self.language_model.get_input_embeddings()(torch.cat(cur_input_ids_noim))
|
344 |
+
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
345 |
+
cur_new_input_embeds = []
|
346 |
+
cur_new_labels = []
|
347 |
+
|
348 |
+
for i in range(num_images + 1):
|
349 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
350 |
+
cur_new_labels.append(cur_labels_noim[i])
|
351 |
+
if i < num_images:
|
352 |
+
cur_image_features = image_features[cur_image_idx]
|
353 |
+
cur_image_idx += 1
|
354 |
+
cur_new_input_embeds.append(cur_image_features)
|
355 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
|
356 |
+
|
357 |
+
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
|
358 |
+
|
359 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
360 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
361 |
+
|
362 |
+
new_input_embeds.append(cur_new_input_embeds)
|
363 |
+
new_labels.append(cur_new_labels)
|
364 |
+
|
365 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
366 |
+
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
367 |
+
if tokenizer_model_max_length is not None:
|
368 |
+
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
369 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
370 |
+
|
371 |
+
# Combine them
|
372 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
373 |
+
batch_size = len(new_input_embeds)
|
374 |
+
|
375 |
+
new_input_embeds_padded = []
|
376 |
+
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
377 |
+
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
|
378 |
+
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
379 |
+
|
380 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
381 |
+
cur_len = cur_new_embed.shape[0]
|
382 |
+
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
|
383 |
+
new_input_embeds_padded.append(torch.cat((
|
384 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
385 |
+
cur_new_embed
|
386 |
+
), dim=0))
|
387 |
+
if cur_len > 0:
|
388 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
389 |
+
attention_mask[i, -cur_len:] = True
|
390 |
+
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
391 |
+
else:
|
392 |
+
new_input_embeds_padded.append(torch.cat((
|
393 |
+
cur_new_embed,
|
394 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
395 |
+
), dim=0))
|
396 |
+
if cur_len > 0:
|
397 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
398 |
+
attention_mask[i, :cur_len] = True
|
399 |
+
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
400 |
+
|
401 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
402 |
+
|
403 |
+
if _labels is None:
|
404 |
+
new_labels = None
|
405 |
+
else:
|
406 |
+
new_labels = new_labels_padded
|
407 |
+
|
408 |
+
if _attention_mask is None:
|
409 |
+
attention_mask = None
|
410 |
+
else:
|
411 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
412 |
+
|
413 |
+
if _position_ids is None:
|
414 |
+
position_ids = None
|
415 |
+
|
416 |
+
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
417 |
+
|
418 |
+
AutoConfig.register("tinyllava", TinyLlavaConfig)
|
419 |
+
AutoModelForCausalLM.register(TinyLlavaConfig, TinyLlavaForConditionalGeneration)
|