tmnam20 commited on
Commit
642166f
·
verified ·
1 Parent(s): 6ac56b8

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ base_model: microsoft/mdeberta-v3-base
6
+ tags:
7
+ - generated_from_trainer
8
+ datasets:
9
+ - tmnam20/VieGLUE
10
+ metrics:
11
+ - accuracy
12
+ model-index:
13
+ - name: mdeberta-v3-base-qnli-1
14
+ results:
15
+ - task:
16
+ name: Text Classification
17
+ type: text-classification
18
+ dataset:
19
+ name: tmnam20/VieGLUE/QNLI
20
+ type: tmnam20/VieGLUE
21
+ config: qnli
22
+ split: validation
23
+ args: qnli
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.8998718652754897
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # mdeberta-v3-base-qnli-1
34
+
35
+ This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/QNLI dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 0.2782
38
+ - Accuracy: 0.8999
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 2e-05
58
+ - train_batch_size: 32
59
+ - eval_batch_size: 16
60
+ - seed: 1
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 3.0
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.3768 | 0.15 | 500 | 0.3291 | 0.8596 |
70
+ | 0.3506 | 0.31 | 1000 | 0.2961 | 0.8752 |
71
+ | 0.3417 | 0.46 | 1500 | 0.2917 | 0.8808 |
72
+ | 0.3319 | 0.61 | 2000 | 0.2742 | 0.8871 |
73
+ | 0.3126 | 0.76 | 2500 | 0.2686 | 0.8913 |
74
+ | 0.3073 | 0.92 | 3000 | 0.2639 | 0.8916 |
75
+ | 0.2867 | 1.07 | 3500 | 0.2557 | 0.8958 |
76
+ | 0.2313 | 1.22 | 4000 | 0.2937 | 0.8880 |
77
+ | 0.2364 | 1.37 | 4500 | 0.2585 | 0.8971 |
78
+ | 0.2533 | 1.53 | 5000 | 0.2545 | 0.8938 |
79
+ | 0.2333 | 1.68 | 5500 | 0.2629 | 0.8955 |
80
+ | 0.225 | 1.83 | 6000 | 0.2532 | 0.9002 |
81
+ | 0.2313 | 1.99 | 6500 | 0.2520 | 0.8988 |
82
+ | 0.1793 | 2.14 | 7000 | 0.2819 | 0.8953 |
83
+ | 0.1639 | 2.29 | 7500 | 0.2809 | 0.8964 |
84
+ | 0.1645 | 2.44 | 8000 | 0.2778 | 0.8990 |
85
+ | 0.1753 | 2.6 | 8500 | 0.2802 | 0.8988 |
86
+ | 0.1859 | 2.75 | 9000 | 0.2775 | 0.9001 |
87
+ | 0.1809 | 2.9 | 9500 | 0.2767 | 0.8988 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.35.2
93
+ - Pytorch 2.2.0.dev20231203+cu121
94
+ - Datasets 2.15.0
95
+ - Tokenizers 0.15.0