File size: 2,874 Bytes
c3cc3eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
language:
- en
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
datasets:
- tmnam20/VieGLUE
metrics:
- accuracy
model-index:
- name: mdeberta-v3-base-qnli-100
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tmnam20/VieGLUE/QNLI
type: tmnam20/VieGLUE
config: qnli
split: validation
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.8974922203917262
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mdeberta-v3-base-qnli-100
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2906
- Accuracy: 0.8975
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 100
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3773 | 0.15 | 500 | 0.3870 | 0.8431 |
| 0.3547 | 0.31 | 1000 | 0.3175 | 0.8658 |
| 0.3385 | 0.46 | 1500 | 0.2986 | 0.8739 |
| 0.342 | 0.61 | 2000 | 0.2787 | 0.8845 |
| 0.3003 | 0.76 | 2500 | 0.3075 | 0.8726 |
| 0.3298 | 0.92 | 3000 | 0.2781 | 0.8807 |
| 0.2475 | 1.07 | 3500 | 0.2695 | 0.8942 |
| 0.2441 | 1.22 | 4000 | 0.2615 | 0.8940 |
| 0.249 | 1.37 | 4500 | 0.2548 | 0.8958 |
| 0.2261 | 1.53 | 5000 | 0.2588 | 0.8946 |
| 0.2348 | 1.68 | 5500 | 0.2587 | 0.8982 |
| 0.2626 | 1.83 | 6000 | 0.2581 | 0.8982 |
| 0.2463 | 1.99 | 6500 | 0.2520 | 0.8964 |
| 0.1768 | 2.14 | 7000 | 0.2795 | 0.8951 |
| 0.1768 | 2.29 | 7500 | 0.3069 | 0.8942 |
| 0.1752 | 2.44 | 8000 | 0.2783 | 0.8971 |
| 0.1687 | 2.6 | 8500 | 0.2900 | 0.8995 |
| 0.163 | 2.75 | 9000 | 0.2828 | 0.8969 |
| 0.1547 | 2.9 | 9500 | 0.2873 | 0.8980 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.2.0.dev20231203+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|