File size: 1,570 Bytes
ff38896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233bb81
 
 
ff38896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
base_model: Qwen/Qwen2-VL-7B-Instruct
library_name: peft
license: apache-2.0
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: qwen2-7b-instruct-amazon-description-clone
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# qwen2-7b-instruct-amazon-description-clone

This model is a fine-tuned version of [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) on an unknown dataset. 

Clone of [philschmid/qwen2-2b-instruct-amazon-description](https://huggingface.co/philschmid/qwen2-2b-instruct-amazon-description).  See his blog [How to Fine-Tune Multimodal Models or VLMs with Hugging Face TRL](https://www.philschmid.de/fine-tune-multimodal-llms-with-trl) for more details.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3

### Training results



### Framework versions

- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.4.1+cu124
- Datasets 3.0.1
- Tokenizers 0.20.0