model update
Browse files
README.md
CHANGED
@@ -12,82 +12,74 @@ model-index:
|
|
12 |
name: Token Classification
|
13 |
type: token-classification
|
14 |
dataset:
|
15 |
-
name: tner/tweetner7
|
16 |
-
type: tner/tweetner7
|
17 |
-
args: tner/tweetner7
|
18 |
metrics:
|
19 |
-
- name: F1
|
20 |
type: f1
|
21 |
value: 0.6321284238886395
|
22 |
-
- name: Precision
|
23 |
type: precision
|
24 |
value: 0.6142015706806283
|
25 |
-
- name: Recall
|
26 |
type: recall
|
27 |
value: 0.6511332099907493
|
28 |
-
- name: F1 (
|
29 |
type: f1_macro
|
30 |
value: 0.583682304736069
|
31 |
-
- name: Precision (
|
32 |
type: precision_macro
|
33 |
value: 0.5654677691354458
|
34 |
-
- name: Recall (
|
35 |
type: recall_macro
|
36 |
value: 0.6047150410746663
|
37 |
-
- name: F1 (
|
38 |
type: f1_entity_span
|
39 |
value: 0.7703620544484986
|
40 |
-
- name: Precision (
|
41 |
type: precision_entity_span
|
42 |
value: 0.7484729493891797
|
43 |
-
- name: Recall (
|
44 |
type: recall_entity_span
|
45 |
value: 0.7935700242858795
|
46 |
-
|
47 |
-
name: Token Classification
|
48 |
-
type: token-classification
|
49 |
-
dataset:
|
50 |
-
name: tner/tweetner7/test_2020
|
51 |
-
type: tner/tweetner7/test_2020
|
52 |
-
args: tner/tweetner7/test_2020
|
53 |
-
metrics:
|
54 |
-
- name: F1
|
55 |
type: f1
|
56 |
value: 0.6368775235531628
|
57 |
-
- name: Precision
|
58 |
type: precision
|
59 |
value: 0.6616331096196868
|
60 |
-
- name: Recall
|
61 |
type: recall
|
62 |
value: 0.6139076284379865
|
63 |
-
- name: F1 (
|
64 |
type: f1_macro
|
65 |
value: 0.5976605759407211
|
66 |
-
- name: Precision (
|
67 |
type: precision_macro
|
68 |
value: 0.6177069721428509
|
69 |
-
- name: Recall (
|
70 |
type: recall_macro
|
71 |
value: 0.5812570646484104
|
72 |
-
- name: F1 (
|
73 |
type: f1_entity_span
|
74 |
value: 0.7542395693135936
|
75 |
-
- name: Precision (
|
76 |
type: precision_entity_span
|
77 |
value: 0.7835570469798657
|
78 |
-
- name: Recall (
|
79 |
type: recall_entity_span
|
80 |
value: 0.7270368448365335
|
81 |
|
82 |
pipeline_tag: token-classification
|
83 |
widget:
|
84 |
-
- text: "
|
85 |
example_title: "NER Example 1"
|
86 |
---
|
87 |
# tner/twitter-roberta-base-dec2021-tweetner7-random
|
88 |
|
89 |
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2021](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) on the
|
90 |
-
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset.
|
91 |
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
for more detail). It achieves the following results on the test set of 2021:
|
93 |
- F1 (micro): 0.6321284238886395
|
|
|
12 |
name: Token Classification
|
13 |
type: token-classification
|
14 |
dataset:
|
15 |
+
name: tner/tweetner7
|
16 |
+
type: tner/tweetner7
|
17 |
+
args: tner/tweetner7
|
18 |
metrics:
|
19 |
+
- name: F1 (test_2021)
|
20 |
type: f1
|
21 |
value: 0.6321284238886395
|
22 |
+
- name: Precision (test_2021)
|
23 |
type: precision
|
24 |
value: 0.6142015706806283
|
25 |
+
- name: Recall (test_2021)
|
26 |
type: recall
|
27 |
value: 0.6511332099907493
|
28 |
+
- name: Macro F1 (test_2021)
|
29 |
type: f1_macro
|
30 |
value: 0.583682304736069
|
31 |
+
- name: Macro Precision (test_2021)
|
32 |
type: precision_macro
|
33 |
value: 0.5654677691354458
|
34 |
+
- name: Macro Recall (test_2021)
|
35 |
type: recall_macro
|
36 |
value: 0.6047150410746663
|
37 |
+
- name: Entity Span F1 (test_2021)
|
38 |
type: f1_entity_span
|
39 |
value: 0.7703620544484986
|
40 |
+
- name: Entity Span Precision (test_2020)
|
41 |
type: precision_entity_span
|
42 |
value: 0.7484729493891797
|
43 |
+
- name: Entity Span Recall (test_2021)
|
44 |
type: recall_entity_span
|
45 |
value: 0.7935700242858795
|
46 |
+
- name: F1 (test_2020)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
type: f1
|
48 |
value: 0.6368775235531628
|
49 |
+
- name: Precision (test_2020)
|
50 |
type: precision
|
51 |
value: 0.6616331096196868
|
52 |
+
- name: Recall (test_2020)
|
53 |
type: recall
|
54 |
value: 0.6139076284379865
|
55 |
+
- name: Macro F1 (test_2020)
|
56 |
type: f1_macro
|
57 |
value: 0.5976605759407211
|
58 |
+
- name: Macro Precision (test_2020)
|
59 |
type: precision_macro
|
60 |
value: 0.6177069721428509
|
61 |
+
- name: Macro Recall (test_2020)
|
62 |
type: recall_macro
|
63 |
value: 0.5812570646484104
|
64 |
+
- name: Entity Span F1 (test_2020)
|
65 |
type: f1_entity_span
|
66 |
value: 0.7542395693135936
|
67 |
+
- name: Entity Span Precision (test_2020)
|
68 |
type: precision_entity_span
|
69 |
value: 0.7835570469798657
|
70 |
+
- name: Entity Span Recall (test_2020)
|
71 |
type: recall_entity_span
|
72 |
value: 0.7270368448365335
|
73 |
|
74 |
pipeline_tag: token-classification
|
75 |
widget:
|
76 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
77 |
example_title: "NER Example 1"
|
78 |
---
|
79 |
# tner/twitter-roberta-base-dec2021-tweetner7-random
|
80 |
|
81 |
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2021](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) on the
|
82 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_random` split).
|
83 |
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
84 |
for more detail). It achieves the following results on the test set of 2021:
|
85 |
- F1 (micro): 0.6321284238886395
|